Benchtop in vitro experiments are valuable tools for investigating the cardiovascular system and testing medical devices. Accurate reproduction of the physiologic flow waveforms at various anatomic locations is an important component of these experimental methods. This study discusses the design, construction, and testing of a low-cost and fully programmable pulsatile flow pump capable of continuously producing unlimited cycles of physiologic waveforms. It consists of a gear pump actuated by an AC servomotor and a feedback algorithm to achieve highly accurate reproduction of flow waveforms for flow rates up to 300 ml/s across a range of loading conditions. The iterative feedback algorithm uses the flow error values in one iteration to modify the motor control waveform for the next iteration to better match the desired flow. Within four to seven iterations of feedback, the pump replicated desired physiologic flow waveforms to within 2% normalized RMS error (for flow rates above 20 mL/s) under varying downstream impedances. This pump device is significantly more affordable (∼10% of the cost) than current commercial options. More importantly, the pump can be controlled via common scientific software and thus easily implemented into large automation frameworks.

References

1.
Mozaffarian
,
D.
,
Benjamin
,
E. J.
,
Go
,
A. S.
,
Arnett
,
D. K.
,
Blaha
,
M. J.
,
Cushman
,
M.
,
de Ferranti
,
S.
,
Despres
,
J.-P.
,
Fullerton
,
H. J.
,
Howard
,
V. J.
,
Huffman
,
M. D.
,
Judd
,
S. E.
,
Kissela
,
B. M.
,
Lackland
,
D. T.
,
Lichtman
,
J. H.
,
Lisabeth
,
L. D.
,
Liu
,
S.
,
Mackey
,
R. H.
,
Matchar
,
D. B.
,
McGuire
,
D. K.
,
Mohler
,
E. R.
,
Moy
,
C. S.
,
Muntner
,
P.
,
Mussolino
,
M. E.
,
Nasir
,
K.
,
Neumar
,
R. W.
,
Nichol
,
G.
,
Palaniappan
,
L.
,
Pandey
,
D. K.
,
Reeves
,
M. J.
,
Rodriguez
,
C. J.
,
Sorlie
,
P. D.
,
Stein
,
J.
,
Towfighi
,
A.
,
Turan
,
T. N.
,
Virani
,
S. S.
,
Willey
,
J. Z.
,
Woo
,
D.
,
Yeh
,
R. W.
, and
Turner
,
M. B.
,
2014
, “
Heart Disease and Stroke Statistics—2015 Update: A Report From the American Heart Association
,”
Circulation
,
131
(
4
), pp.
e29
e322
.
2.
Glagov
,
S.
,
Zarins
,
C.
,
Giddens
,
D.
, and
Ku
,
D.
,
1988
, “
Hemodynamics and Atherosclerosis. Insights and Perspectives Gained From Studies of Human Arteries
,”
Arch. Pathol. Lab. Med.
,
112
(
10
), pp.
1018
1031
.
3.
Groves
,
E. M.
,
Falahatpisheh
,
A.
,
Su
,
J. L.
, and
Kheradvar
,
A.
,
2014
, “
The Effects of Positioning of Transcatheter Aortic Valves on Fluid Dynamics of the Aortic Root
,”
ASAIO J.
,
60
(
5
), pp.
545
552
.
4.
Pahlevan
,
N. M.
, and
Gharib
,
M.
,
2013
, “
In-Vitro Investigation of a Potential Wave Pumping Effect in Human Aorta
,”
J. Biomech.
,
46
(
13
), pp.
2122
2129
.
5.
Kefayati
,
S.
, and
Poepping
,
T. L.
,
2010
, “
3-D Flow Characterization and Shear Stress in a Stenosed Carotid Artery Bifurcation Model Using Stereoscopic PIV Technique
,”
Annual International Conference of the IEEE Engineering in Medicine and Biology Society
(
EMBC
), Aug. 31–Sept. 4, pp.
3386
3389
.
6.
Frayne
,
R.
,
Holdsworth
,
D. W.
,
Gowman
,
L. M.
,
Rickey
,
D. W.
,
Drangova
,
M.
,
Fenster
,
A.
, and
Rutt
,
B. K.
,
1992
, “
Computer-Controlled Flow Simulator for MR Flow Studies
,”
J. Magn. Reson. Imaging
,
2
(
5
), pp.
605
612
.
7.
Hoskins
,
P. R.
,
Anderson
,
T.
, and
McDicken
,
W. N.
,
1989
, “
A Computer Controlled Flow Phantom for Generation of Physiological Doppler Waveforms
,”
Phys. Med. Biol.
,
34
(
11
), pp.
1709
1717
.
8.
Eriksson
,
A.
,
Persson
,
H. W.
, and
Lindstrom
,
K.
,
2000
, “
A Computer-Controlled Arbitrary Flow Wave Form Generator for Physiological Studies
,”
Rev. Sci. Instrum.
,
71
(
1
), pp.
235
242
.
9.
Tsai
,
W.
, and
Savaş
,
O.
,
2010
, “
Flow Pumping System for Physiological Waveforms
,”
Med. Biol. Eng. Comput.
,
48
(
2
), pp.
197
201
.
10.
Kung
,
E. O.
, and
Taylor
,
C. A.
,
2011
, “
Development of a Physical Windkessel Module to Re-Create In Vivo Vascular Flow Impedance for In Vitro Experiments
,”
Cardiovasc. Eng. Technol.
,
2
(
1
), pp.
2
14
.
11.
Kung
,
E. O.
,
Les
,
A. S.
,
Medina
,
F.
,
Wicker
,
R. B.
,
McConnell
,
M. V.
, and
Taylor
,
C. A.
,
2011
, “
In Vitro Validation of Finite-Element Model of AAA Hemodynamics Incorporating Realistic Outlet Boundary Conditions
,”
ASME J. Biomech. Eng.
,
133
(
4
), p.
041003
.
You do not currently have access to this content.