The vertebral strength and strain can be assessed in vitro by both using isolated vertebrae and sets of three adjacent vertebrae (the central one is loaded through the disks). Our goal was to elucidate if testing single-vertebra-specimens in the elastic regime provides different surface strains to three-vertebrae-segments. Twelve three-vertebrae sets were extracted from thoracolumbar human spines. To measure the principal strains, the central vertebra of each segment was prepared with eight strain-gauges. The sets were tested mechanically, allowing comparison of the surface strains between the two boundary conditions: first when the same vertebra was loaded through the disks (three-vertebrae-segment) and then with the endplates embedded in cement (single-vertebra). They were all subjected to four nondestructive tests (compression, traction, torsion clockwise, and counterclockwise). The magnitude of principal strains differed significantly between the two boundary conditions. For axial loading, the largest principal strains (along vertebral axis) were significantly higher when the same vertebra was tested isolated compared to the three-vertebrae-segment. Conversely, circumferential strains decreased significantly in the single vertebrae compared to the three-vertebrae-segment, with some variations exceeding 100% of the strain magnitude, including changes from tension to compression. For torsion, the differences between boundary conditions were smaller. This study shows that, in the elastic regime, when the vertebra is loaded through a cement pot, the surface strains differ from when it is loaded through the disks. Therefore, when single vertebrae are tested, surface strain should be taken with caution.

References

1.
Brandolini
,
N.
,
Kapur
,
N.
, and
Hall
,
R. M.
,
2014
, “
Dynamics of Interpedicular Widening in Spinal Burst Fractures: An In Vitro Investigation
,”
Spine J.
,
14
(
9
), pp.
2164
2171
.
2.
Hongo
,
M.
,
Abe
,
E.
,
Shimada
,
Y.
,
Murai
,
H.
,
Ishikawa
,
N.
, and
Sato
,
K.
,
1999
, “
Surface Strain Distribution on Thoracic and Lumbar Vertebrae Under Axial Compression: The Role in Burst Fractures
,”
Spine
,
24
(
12
), pp.
1197
1202
.
3.
Whyne
,
C. M.
,
Hu
,
S. S.
, and
Lotz
,
J. C.
,
2003
, “
Burst Fracture in the Metastatically Involved Spine: Development, Validation, and Parametric Analysis of a Three-Dimensional Poroelastic Finite-Element Model
,”
Spine (Phila Pa 1976)
,
28
(
7
), pp.
652
660
.
4.
Zirbel
,
S. A.
,
Stolworthy
,
D. K.
,
Howell
,
L. L.
, and
Bowden
,
A. E.
,
2013
, “
Intervertebral Disc Degeneration Alters Lumbar Spine Segmental Stiffness in All Modes of Loading Under a Compressive Follower Load
,”
Spine J.
,
13
(
9
), pp.
1134
1147
.
5.
Jiang
,
G.
,
Luo
,
J.
,
Pollintine
,
P.
,
Dolan
,
P.
,
Adams
,
M. A.
, and
Eastell
,
R.
,
2010
, “
Vertebral Fractures in the Elderly May Not Always Be ‘Osteoporotic’
,”
Bone
,
47
(
1
), pp.
111
116
.
6.
Cristofolini
,
L.
,
Brandolini
,
N.
,
Danesi
,
V.
,
Erani
,
P.
,
Viceconti
,
M.
, and
Ferguson
,
S. J.
,
2016
, “
A Preliminary In Vitro Biomechanical Evaluation of Prophylactic Cement Augmentation of the Thoracolumbar Vertebrae
,”
J. Mech. Med. Biol.
,
16
(
5
), p.
1650074
.
7.
White
,
A. A.
, 3rd, and
Panjabi
,
M. M.
,
1978
, “
The Basic Kinematics of the Human Spine. A Review of Past and Current Knowledge
,”
Spine (Phila Pa 1976)
,
3
(
1
), pp.
12
20
.
8.
Brandolini
,
N.
,
Cristofolini
,
L.
, and
Viceconti
,
M.
,
2014
, “
Experimental Methods for the Biomechanical Investigation of the Human Spine: A Review
,”
J. Mech. Med. Biol.
,
14
(
1
), p.
1430002
.
9.
Lochmüller
,
E. M.
,
Burklein
,
D.
,
Kuhn
,
V.
,
Glaser
,
C.
,
Muller
,
R.
,
Gluer
,
C. C.
, and
Eckstein
,
F.
,
2002
, “
Mechanical Strength of the Thoracolumbar Spine in the Elderly: Prediction From In Situ Dual-Energy X-Ray Absorptiometry, Quantitative Computed Tomography (QCT), Upper and Lower Limb Peripheral QCT, and Quantitative Ultrasound
,”
Bone
,
31
(
1
), pp.
77
84
.
10.
Cristofolini
,
L.
,
Brandolini
,
N.
,
Danesi
,
V.
,
Juszczyk
,
M. M.
,
Erani
,
P.
, and
Viceconti
,
M.
,
2013
, “
Strain Distribution in the Lumbar Vertebrae Under Different Loading Configurations
,”
Spine J.
,
13
(
10
), pp.
1281
1292
.
11.
Kayanja
,
M. M.
,
Ferrara
,
L. A.
, and
Lieberman
,
I. H.
,
2004
, “
Distribution of Anterior Cortical Shear Strain After a Thoracic Wedge Compression Fracture
,”
Spine J.
,
4
(
1
), pp.
76
87
.
12.
Ananthakrishnan
,
D.
,
Berven
,
S.
,
Deviren
,
V.
,
Cheng
,
K.
,
Lotz
,
J. C.
,
Xu
,
Z.
, and
Puttlitz
,
C. M.
,
2005
, “
The Effect on Anterior Column Loading Due to Different Vertebral Augmentation Techniques
,”
Clin. Biomech. (Bristol, Avon)
,
20
(
1
), pp.
25
31
.
13.
Lu
,
Y.
,
Maquer
,
G.
,
Museyko
,
O.
,
Puschel
,
K.
,
Engelke
,
K.
,
Zysset
,
P.
,
Morlock
,
M.
, and
Huber
,
G.
,
2014
, “
Finite Element Analyses of Human Vertebral Bodies Embedded in Polymethylmethalcrylate or Loaded Via the Hyperelastic Intervertebral Disc Models Provide Equivalent Predictions of Experimental Strength
,”
J. Biomech.
,
47
(
10
), pp.
2512
2516
.
14.
Oakland
,
R. J.
,
Furtado
,
N. R.
,
Wilcox
,
R. K.
,
Timothy
,
J.
, and
Hall
,
R. M.
,
2009
, “
Preliminary Biomechanical Evaluation of Prophylactic Vertebral Reinforcement Adjacent to Vertebroplasty Under Cyclic Loading
,”
Spine J.
,
9
(
2
), pp.
174
181
.
15.
Bürklein
,
D.
,
Lochmüller
,
E. M.
,
Kuhn
,
V.
,
Grimm
,
J.
,
Barkmann
,
R.
,
Müller
,
R.
, and
Eckstein
,
F.
,
2001
, “
Correlation of Thoracic and Lumbar Vertebral Failure Loads With In Situ vs. Ex Situ Dual Energy X-Ray Absorptiometry
,”
J. Biomech.
,
34
(
5
), pp.
579
587
.
16.
Moro
,
M.
,
Hecker
,
A. T.
,
Bouxsein
,
M. L.
, and
Myers
,
E. R.
,
1995
, “
Failure Load of Thoracic Vertebrae Correlates With Lumbar Bone Mineral Density Measured by DXA
,”
Calcif. Tissue Int.
,
56
(
3
), pp.
206
209
.
17.
Andresen
,
R.
,
Werner
,
H.
, and
Schober
,
H.
,
1998
, “
Contribution of the Cortical Shell of Vertebrae to Mechanical Behaviour of the Lumbar Vertebrae With Implications for Predicting Fracture Risk
,”
Br. J. Radiol.
,
71
(
847
), pp.
759
765
.
18.
Chevalier
,
Y.
,
Pahr
,
D.
,
Charlebois
,
M.
,
Heini
,
P.
,
Schneider
,
E.
, and
Zysset
,
P.
,
2008
, “
Cement Distribution, Volume, and Compliance in Vertebroplasty: Some Answers From an Anatomy-Based Nonlinear Finite Element Study
,”
Spine (Phila Pa 1976)
,
33
(
16
), pp.
1722
1730
.
19.
Aquarius
,
R.
,
van der Zijden
,
A. M.
,
Homminga
,
J.
,
Verdonschot
,
N.
, and
Tanck
,
E.
,
2013
, “
Does Bone Cement in Percutaneous Vertebroplasty Act as a Stress Riser?
,”
Spine (Phila Pa 1976)
,
38
(
24
), pp.
2092
2097
.
20.
Belkoff
,
S. M.
,
Mathis
,
J. M.
,
Fenton
,
D. C.
,
Scribner
,
R. M.
,
Reiley
,
M. E.
, and
Talmadge
,
K.
,
2001
, “
An Ex Vivo Biomechanical Evaluation of an Inflatable Bone Tamp Used in the Treatment of Compression Fracture
,”
Spine (Phila Pa 1976)
,
26
(
2
), pp.
151
156
.
21.
Heini
,
P. F.
,
Berlemann
,
U.
,
Kaufmann
,
M.
,
Lippuner
,
K.
,
Fankhauser
,
C.
, and
van Landuyt
,
P.
,
2001
, “
Augmentation of Mechanical Properties in Osteoporotic Vertebral Bones—A Biomechanical Investigation of Vertebroplasty Efficacy With Different Bone Cements
,”
Eur. Spine J.
,
10
(
2
), pp.
164
171
.
22.
Higgins
,
K. B.
,
Harten
,
R. D.
,
Langrana
,
N. A.
, and
Reiter
,
M. F.
,
2003
, “
Biomechanical Effects of Unipedicular Vertebroplasty on Intact Vertebrae
,”
Spine (Phila Pa 1976)
,
28
(
14
), pp.
1540
1547
.
23.
Ikeuchi
,
M.
,
Yamamoto
,
H.
,
Shibata
,
T.
, and
Otani
,
M.
,
2001
, “
Mechanical Augmentation of the Vertebral Body by Calcium Phosphate Cement Injection
,”
J. Orthop. Sci.
,
6
(
1
), pp.
39
45
.
24.
Buckley
,
J. M.
,
Cheng
,
L.
,
Loo
,
K.
,
Slyfield
,
C.
, and
Xu
,
Z.
,
2007
, “
Quantitative Computed Tomography-Based Predictions of Vertebral Strength in Anterior Bending
,”
Spine
,
32
(
9
), pp.
1019
1027
.
25.
Buckley
,
J. M.
,
Kuo
,
C. C.
,
Cheng
,
L. C.
,
Loo
,
K.
,
Motherway
,
J.
,
Slyfield
,
C.
,
Deviren
,
V.
, and
Ames
,
C.
,
2009
, “
Relative Strength of Thoracic Vertebrae in Axial Compression Versus Flexion
,”
Spine J.
,
9
(
6
), pp.
478
485
.
26.
Edmondston
,
S. J.
,
Singer
,
K. P.
,
Day
,
R. E.
,
Price
,
R. I.
, and
Breidahl
,
P. D.
,
1997
, “
Ex Vivo Estimation of Thoracolumbar Vertebral Body Compressive Strength: The Relative Contributions of Bone Densitometry and Vertebral Morphometry
,”
Osteoporosis Int.
,
7
(
2
), pp.
142
148
.
27.
Furtado
,
N.
,
Oakland
,
R. J.
,
Wilcox
,
R. K.
, and
Hall
,
R. M.
,
2007
, “
A Biomechanical Investigation of Vertebroplasty in Osteoporotic Compression Fractures and in Prophylactic Vertebral Reinforcement
,”
Spine
,
32
(
17
), pp.
E480
E487
.
28.
Imai
,
K.
,
Ohnishi
,
I.
,
Bessho
,
M.
, and
Nakamura
,
K.
,
2006
, “
Nonlinear Finite Element Model Predicts Vertebral Bone Strength and Fracture Site
,”
Spine (Phila Pa 1976)
,
31
(
16
), pp.
1789
1794
.
29.
Perilli
,
E.
,
Briggs
,
A. M.
,
Kantor
,
S.
,
Codrington
,
J.
,
Wark
,
J. D.
,
Parkinson
,
I. H.
, and
Fazzalari
,
N. L.
,
2012
, “
Failure Strength of Human Vertebrae: Prediction Using Bone Mineral Density Measured by DXA and Bone Volume by Micro-CT
,”
Bone
,
50
(
6
), pp.
1416
1425
.
30.
Fields
,
A. J.
,
Eswaran
,
S. K.
,
Jekir
,
M. G.
, and
Keaveny
,
T. M.
,
2009
, “
Role of Trabecular Microarchitecture in Whole-Vertebral Body Biomechanical Behavior
,”
J. Bone Miner. Res.
,
24
(
9
), pp.
1523
1530
.
31.
Dall'Ara
,
E.
,
Schmidt
,
R.
,
Pahr
,
D.
,
Varga
,
P.
,
Chevalier
,
Y.
,
Patsch
,
J.
,
Kainberger
,
F.
, and
Zysset
,
P.
,
2010
, “
A Nonlinear Finite Element Model Validation Study Based on a Novel Experimental Technique for Inducing Anterior Wedge-Shape Fractures in Human Vertebral Bodies In Vitro
,”
J. Biomech.
,
43
(
12
), pp.
2374
2380
.
32.
Ebbesen
,
E. N.
,
Thomsen
,
J. S.
,
Beck-Nielsen
,
H.
,
Nepper-Rasmussen
,
H. J.
, and
Mosekilde
,
L.
,
1999
, “
Lumbar Vertebral Body Compressive Strength Evaluated by Dual-Energy X-Ray Absorptiometry, Quantitative Computed Tomography, and Ashing
,”
Bone
,
25
(
6
), pp.
713
724
.
33.
Yerby
,
S. A.
,
Bay
,
B. K.
,
Toh
,
E.
,
McLain
,
R. F.
, and
Drews
,
M. J.
,
1998
, “
The Effect of Boundary Conditions on Experimentally Measured Trabecular Strain in the Thoracic Spine
,”
J. Biomech.
,
31
(
10
), pp.
891
897
.
34.
Hussein
,
A. I.
,
Mason
,
Z. D.
, and
Morgan
,
E. F.
,
2013
, “
Presence of Intervertebral Discs Alters Observed Stiffness and Failure Mechanisms in the Vertebra
,”
J. Biomech.
,
46
(
10
), pp.
1683
1688
.
35.
Eswaran
,
S. K.
,
Gupta
,
A.
,
Adams
,
M. F.
, and
Keaveny
,
T. M.
,
2006
, “
Cortical and Trabecular Load Sharing in the Human Vertebral Body
,”
J. Bone Miner. Res.
,
21
(
2
), pp.
307
314
.
36.
Danesi
,
V.
,
Zani
,
L.
,
Scheele
,
A.
,
Berra
,
F.
, and
Cristofolini
,
L.
,
2014
, “
Reproducible Reference Frame for In Vitro Testing of the Human Vertebrae
,”
J. Biomech.
,
47
(
1
), pp.
313
318
.
37.
Cristofolini
,
L.
,
Conti
,
G.
,
Juszczyk
,
M.
,
Cremonini
,
S.
,
Van Sint Jan
,
S.
, and
Viceconti
,
M.
,
2010
, “
Structural Behaviour and Strain Distribution of the Long Bones of the Human Lower Limbs
,”
J. Biomech.
,
43
(
5
), pp.
826
835
.
38.
Bergmann
,
G.
,
2008
, “
Charité Universitaetsmedizin Berlin ‘OrthoLoad’
,” epub, accessed Sept. 10, 2015, www.orthoload.de
39.
Gay
,
R. E.
, and
Brault
,
J. S.
,
2008
, “
Evidence-Informed Management of Chronic Low Back Pain With Traction Therapy
,”
Spine J.
,
8
(
1
), pp.
234
242
.
40.
Edwards
,
W. T.
,
1991
, “
Biomechanics of Posterior Lumbar Fixation—Analysis of Testing Methodologies
,”
Spine (Phila Pa 1976)
,
16
(
10
), pp.
1224
1232
.
41.
Koh
,
I.
,
Marini
,
G.
,
Widmer
,
R. P.
,
Brandolini
,
N.
,
Helgason
,
B.
, and
Ferguson
,
S. J.
,
2016
, “
In Silico Investigation of Vertebroplasty as a Stand-Alone Treatment for Vertebral Burst Fractures
,”
Clin. Biomech. (Bristol, Avon)
,
34
, pp.
53
61
.
42.
Liebschner
,
M. A.
,
Kopperdahl
,
D. L.
,
Rosenberg
,
W. S.
, and
Keaveny
,
T. M.
,
2003
, “
Finite Element Modeling of the Human Thoracolumbar Spine
,”
Spine (Phila Pa 1976)
,
28
(
6
), pp.
559
565
.
43.
Kopperdahl
,
D. L.
,
Pearlman
,
J. L.
, and
Keaveny
,
T. M.
,
2000
, “
Biomechanical Consequences of an Isolated Overload on the Human Vertebral Body
,”
J. Orthop. Res.
,
18
(
5
), pp.
685
690
.
44.
Cristofolini
,
L.
,
Juszczyk
,
M.
,
Taddei
,
F.
, and
Viceconti
,
M.
,
2009
, “
Strain Distribution in the Proximal Human Femoral Metaphysis
,”
Proc. Inst. Mech. Eng., Part H
,
223
(
3
), pp.
273
288
.
45.
Lanyon
,
I. E.
,
1980
, “
Bone Remodelling, Mechanical Stress, and Osteoporosis
,”
Osteoporosis
,
H. F.
De Luca
, ed.,
University Park Press
,
Baltimore, MD
, pp.
129
138
.
46.
Bayraktar
,
H. H.
,
Morgan
,
E. F.
,
Niebur
,
G. L.
,
Morris
,
G. E.
,
Wong
,
E. K.
, and
Keaveny
,
T. M.
,
2004
, “
Comparison of the Elastic and Yield Properties of Human Femoral Trabecular and Cortical Bone Tissue
,”
J. Biomech.
,
37
(
1
), pp.
27
35
.
47.
Taddei
,
F.
,
Cristofolini
,
L.
,
Martelli
,
S.
,
Gill
,
H. S.
, and
Viceconti
,
M.
,
2006
, “
Subject-Specific Finite Element Models of Long Bones: An In Vitro Evaluation of the Overall Accuracy
,”
J. Biomech.
,
39
(
13
), pp.
2457
2467
.
48.
Ross
,
S. M.
,
2003
, “
Peirce's Criterion for the Elimination of Suspect Experimental Data
,”
J. Eng. Technol.
,
20
(2), pp.
38
41
.
49.
Fahim
,
D. K.
,
Sun
,
K.
,
Tawackoli
,
W.
,
Mendel
,
E.
,
Rhines
,
L. D.
,
Burton
,
A. W.
,
Kim
,
D. H.
,
Ehni
,
B. L.
, and
Liebschner
,
M. A.
,
2011
, “
Premature Adjacent Vertebral Fracture After Vertebroplasty: A Biomechanical Study
,”
Neurosurgery
,
69
(
3
), pp.
733
744
.
50.
Cristofolini
,
L.
,
2015
, “
In Vitro Evidence of the Structural Optimization of the Human Skeletal Bones
,”
J. Biomech.
,
48
(
5
), pp.
787
796
.
51.
Adams
,
M. A.
,
Dolan
,
P.
, and
McNally
,
D. S.
,
2009
, “
The Internal Mechanical Functioning of Intervertebral Discs and Articular Cartilage, and Its Relevance to Matrix Biology
,”
Matrix Biol.
,
28
(
7
), pp.
384
389
.
52.
Kyere
,
K. A.
,
Than
,
K. D.
,
Wang
,
A. C.
,
Rahman
,
S. U.
,
Valdivia-Valdivia
,
J. M.
,
La Marca
,
F.
, and
Park
,
P.
,
2012
, “
Schmorl's Nodes
,”
Eur. Spine J.
,
21
(
11
), pp.
2115
2121
.
53.
Shah
,
J.
,
Hampson
,
W.
, and
Jayson
,
M.
,
1978
, “
The Distribution of Surface Strain in the Cadaveric Lumbar Spine
,”
J. Bone Jt. Surg. Br.
,
60-B
(
2
), pp.
246
251
.
54.
Alkalay
,
R. N.
, and
Harrigan
,
T. P.
,
2016
, “
Mechanical Assessment of the Effects of Metastatic Lytic Defect on the Structural Response of Human Thoracolumbar Spine
,”
J. Orthop. Res.
(in press).
55.
Kilincer
,
C.
,
Inceoglu
,
S.
,
Sohn
,
M. J.
,
Ferrara
,
L. A.
,
Bakirci
,
N.
, and
Benzel
,
E. C.
,
2007
, “
Load Sharing Within a Human Thoracic Vertebral Body: An In Vitro Biomechanical Study
,”
Turk. Neurosurg.
,
17
(
3
), pp.
167
177
.
56.
McLain
,
R. F.
,
Yerby
,
S. A.
, and
Moseley
,
T. A.
,
2002
, “
Comparative Morphometry of L4 Vertebrae: Comparison of Large Animal Models for the Human Lumbar Spine
,”
Spine (Phila Pa 1976)
,
27
(
8
), pp.
E200
206
.
57.
Panjabi
,
M. M.
,
Goel
,
V.
,
Oxland
,
T.
,
Takata
,
K.
,
Duranceau
,
J.
,
Krag
,
M.
, and
Price
,
M.
,
1992
, “
Human Lumbar Vertebrae—Quantitative Three-Dimensional Anatomy
,”
Spine (Phila Pa 1976)
,
17
(
3
), pp.
299
306
.
58.
Panjabi
,
M. M.
,
Takata
,
K.
,
Goel
,
V.
,
Federico
,
D.
,
Oxland
,
T.
,
Duranceau
,
J.
, and
Krag
,
M.
,
1991
, “
Thoracic Human Vertebrae—Quantitative Three-Dimensional Anatomy
,”
Spine (Phila Pa 1976)
,
16
(
8
), pp.
888
901
.
59.
Pollintine
,
P.
,
Dolan
,
P.
,
Tobias
,
J. H.
, and
Adams
,
M. A.
,
2004
, “
Intervertebral Disc Degeneration Can Lead to ‘Stress-Shielding’ of the Anterior Vertebral Body: A Cause of Osteoporotic Vertebral Fracture?
,”
Spine (Phila Pa 1976)
,
29
(
7
), pp.
774
782
.
60.
Hansson
,
T.
,
Roos
,
B.
, and
Nachemson
,
A.
,
1980
, “
The Bone Mineral Content and Ultimate Compressive Strength of Lumbar Vertebrae
,”
Spine (Phila Pa 1976)
,
5
(
1
), pp.
46
55
.
61.
Hulme
,
P. A.
,
Boyd
,
S. K.
, and
Ferguson
,
S. J.
,
2007
, “
Regional Variation in Vertebral Bone Morphology and Its Contribution to Vertebral Fracture Strength
,”
Bone
,
41
(
6
), pp.
946
957
.
62.
Hussein
,
A. I.
,
Barbone
,
P. E.
, and
Morgan
,
E. F.
,
2012
, “
Digital Volume Correlation for Study of the Mechanics of Whole Bones
,”
Procedia IUTAM
,
4
, pp.
116
125
.
63.
Roberts
,
B. C.
,
Perilli
,
E.
, and
Reynolds
,
K. J.
,
2014
, “
Application of the Digital Volume Correlation Technique for the Measurement of Displacement and Strain Fields in Bone: A Literature Review
,”
J. Biomech.
,
47
(
5
), pp.
923
934
.
64.
Freddi
,
A.
,
Olmi
,
G.
, and
Cristofolini
,
L.
,
2015
,
Experimental Stress Analysis for Materials and Structures: Stress Analysis Models for Developing Design Methodologies
,
Springer
,
Cham, Switzerland
.
65.
Palanca
,
M.
,
Tozzi
,
G.
,
Cristofolini
,
L.
,
Viceconti
,
M.
, and
Dall'Ara
,
E.
,
2015
, “
Three-Dimensional Local Measurements of Bone Strain and Displacement: Comparison of Three Digital Volume Correlation Approaches
,”
ASME J. Biomech. Eng.
,
137
(
7
), p.
071006
.
You do not currently have access to this content.