The propagation of mechanical signals through nonlinear fibrous tissues is much more extensive than through continuous synthetic hydrogels. Results from recent studies indicate that increased mechanical propagation arises from the fibrous nature of the material rather than the strain-stiffening property. The relative importance of different parameters of the fibrous network structure to this propagation, however, remains unclear. In this work, we directly compared the mechanical response of substrates of varying thickness subjected to a constant cell traction force using either a nonfibrous strain-stiffening continuum-based model or a volume-averaged fiber network model consisting of two different types of fiber network structures: one with low fiber connectivity (growth networks) and one with high fiber connectivity (Delaunay networks). The growth network fiber models predicted a greater propagation of substrate displacements through the model and a greater sensitivity to gel thickness compared to the more connected Delaunay networks and the nonlinear continuum model. Detailed analysis of the results indicates that rotational freedom of the fibers in a network with low fiber connectivity is critically important for enhanced, long-range mechanosensing. Our findings demonstrate the utility of multiscale models in predicting cells mechanosensing on fibrous gels, and they provide a more complete understanding of how cell traction forces propagate through fibrous tissues, which has implications for the design of engineered tissues and the stem cell niche.

References

1.
Yip
,
C. Y. Y.
,
Chen
,
J. H.
,
Zhao
,
R. G.
, and
Simmons
,
C. A.
,
2009
, “
Calcification by Valve Interstitial Cells is Regulated by the Stiffness of the Extracellular Matrix
,”
Arterioscler., Thromb., Vasc. Biol.
,
29
(
6
), pp.
936
942
.
2.
Saha
,
K.
,
Keung
,
A. J.
,
Irwin
,
E. F.
,
Li
,
Y.
,
Little
,
L.
,
Schaffer
,
D. V.
, and
Healy
,
K. E.
,
2008
, “
Substrate Modulus Directs Neural Stem Cell Behavior
,”
Biophys. J.
,
95
(
9
), pp.
4426
4438
.
3.
Discher
,
D. E.
,
Janmey
,
P.
, and
Wang
,
Y. L.
,
2005
, “
Tissue Cells Feel and Respond to the Stiffness of Their Substrate
,”
Science
,
310
(
5751
), pp.
1139
1143
.
4.
Lutolf
,
M. P.
,
Gilbert
,
P. M.
, and
Blau
,
H. M.
,
2009
, “
Designing Materials to Direct Stem-Cell Fate
,”
Nature
,
462
(
7272
), pp.
433
441
.
5.
Reilly
,
G. C.
, and
Engler
,
A. J.
,
2010
, “
Intrinsic Extracellular Matrix Properties Regulate Stem Cell Differentiation
,”
J. Biomech.
,
43
(
1
), pp.
55
62
.
6.
Lo
,
C.-M.
,
Wang
,
H.-B.
,
Dembo
,
M.
, and
Wang
,
Y.-l.
,
2000
, “
Cell Movement Is Guided by the Rigidity of the Substrate
,”
Biophys. J.
,
79
(
1
), pp.
144
152
.
7.
Provenzano
,
P. P.
, and
Keely
,
P. J.
,
2011
, “
Mechanical Signaling Through the Cytoskeleton Regulates Cell Proliferation by Coordinated Focal Adhesion and Rho GTPase Signaling
,”
J. Cell Sci.
,
124
(
Pt. 8
), pp.
1195
1205
.
8.
Engler
,
A. J.
,
Sen
,
S.
,
Sweeney
,
H. L.
, and
Discher
,
D. E.
,
2006
, “
Matrix Elasticity Directs Stem Cell Lineage Specification
,”
Cell
,
126
(
4
), pp.
677
689
.
9.
Guilak
,
F.
,
Butler
,
D. L.
,
Goldstein
,
S. A.
, and
Baaijens
,
F. P.
,
2014
, “
Biomechanics and Mechanobiology in Functional Tissue Engineering
,”
J. Biomech.
,
47
(
9
), pp.
1933
1940
.
10.
De Jesus
,
A. M.
,
Aghvami
,
M.
, and
Sander
,
E. A.
,
2016
, “
A Combined In Vitro Imaging and Multi-Scale Modeling System for Studying the Role of Cell Matrix Interactions in Cutaneous Wound Healing
,”
PloS One
,
11
(2), p. e0148254.
11.
Pelham
,
R. J.
, Jr.
, and
Wang
,
Y.
,
1997
, “
Cell Locomotion and Focal Adhesions Are Regulated by Substrate Flexibility
,”
Proc. Natl. Acad. Sci. U.S.A.
,
94
(
25
), pp.
13661
13665
.
12.
Zarkoob
,
H.
,
Bodduluri
,
S.
,
Ponnaluri
,
S. V.
,
Selby
,
J. C.
, and
Sander
,
E. A.
,
2015
, “
Substrate Stiffness Affects Human Keratinocyte Colony Formation
,”
Cell. Mol. Bioeng.
,
8
(
1
), pp.
32
50
.
13.
Evans
,
N. D.
,
Minelli
,
C.
,
Gentleman
,
E.
,
LaPointe
,
V.
,
Patankar
,
S. N.
,
Kallivretaki
,
M.
,
Chen
,
X.
,
Roberts
,
C. J.
, and
Stevens
,
M. M.
,
2009
, “
Substrate Stiffness Affects Early Differentiation Events in Embryonic Stem Cells
,”
Eur. Cells Mater.
,
18
, pp.
1
13
.
14.
Rudnicki
,
M. S.
,
Cirka
,
H. A.
,
Aghvami
,
M.
,
Sander
,
E. A.
,
Wen
,
Q.
, and
Billiar
,
K. L.
,
2013
, “
Nonlinear Strain Stiffening is Not Sufficient to Explain How Far Cells Can Feel on Fibrous Protein Gels
,”
Biophys. J.
,
105
(
1
), pp.
11
20
.
15.
Winer
,
J. P.
,
Oake
,
S.
, and
Janmey
,
P. A.
,
2009
, “
Non-Linear Elasticity of Extracellular Matrices Enables Contractile Cells to Communicate Local Position and Orientation
,”
PLoS One
,
4
(
7
), p.
e6382
.
16.
Leong
,
W. S.
,
Tay
,
C. Y.
,
Yu
,
H.
,
Li
,
A.
,
Wu
,
S. C.
,
Duc
,
D. H.
,
Lim
,
C. T.
, and
Tan
,
L. P.
,
2010
, “
Thickness Sensing of hMSCs on Collagen Gel Directs Stem Cell Fate
,”
Biochem. Biophys. Res. Commun.
,
401
(
2
), pp.
287
292
.
17.
Ali
,
M. Y.
,
Chuang
,
C. Y.
, and
Saif
,
M. T.
,
2014
, “
Reprogramming Cellular Phenotype by Soft Collagen Gels
,”
Soft Matter
,
10
(
44
), pp.
8829
8837
.
18.
Breuls
,
R. G.
,
Sengers
,
B. G.
,
Oomens
,
C. W.
,
Bouten
,
C. V.
, and
Baaijens
,
F. P.
,
2002
, “
Predicting Local Cell Deformations in Engineered Tissue Constructs: A Multilevel Finite Element Approach
,”
ASME J. Biomech. Eng.
,
124
(
2
), pp.
198
207
.
19.
Guilak
,
F.
, and
Mow
,
V. C.
,
2000
, “
The Mechanical Environment of the Chondrocyte: A Biphasic Finite Element Model of Cell–Matrix Interactions in Articular Cartilage
,”
J. Biomech.
,
33
(
12
), pp.
1663
1673
.
20.
Stops
,
A. J.
,
McMahon
,
L. A.
,
O'Mahoney
,
D.
,
Prendergast
,
P. J.
, and
McHugh
,
P. E.
,
2008
, “
A Finite Element Prediction of Strain on Cells in a Highly Porous Collagen-Glycosaminoglycan Scaffold
,”
ASME J. Biomech. Eng.
,
130
(
6
), p.
061001
.
21.
Sen
,
S.
,
Engler
,
A. J.
, and
Discher
,
D. E.
,
2009
, “
Matrix Strains Induced by Cells: Computing How Far Cells Can Feel
,”
Cell. Mol. Bioeng.
,
2
(
1
), pp.
39
48
.
22.
Mehrotra
,
S.
,
Hunley
,
S. C.
,
Pawelec
,
K. M.
,
Zhang
,
L. X.
,
Lee
,
I.
,
Baek
,
S.
, and
Chan
,
C.
,
2010
, “
Cell Adhesive Behavior on Thin Polyelectrolyte Multilayers: Cells Attempt to Achieve Homeostasis of Its Adhesion Energy
,”
Langmuir
,
26
(
15
), pp.
12794
12802
.
23.
Maloney
,
J. M.
,
Walton
,
E. B.
,
Bruce
,
C. M.
, and
Van Vliet
,
K. J.
,
2008
, “
Influence of Finite Thickness and Stiffness on Cellular Adhesion-Induced Deformation of Compliant Substrata
,”
Phys. Rev. E
,
78
(
4 Pt. 1
), p.
041923
.
24.
Zielinski
,
R.
,
Mihai
,
C.
,
Kniss
,
D.
, and
Ghadiali
,
S. N.
,
2013
, “
Finite Element Analysis of Traction Force Microscopy: Influence of Cell Mechanics, Adhesion, and Morphology
,”
ASME J. Biomech. Eng.
,
135
(
7
), p.
071009
.
25.
Lin
,
Y.-C.
,
Tambe
,
D. T.
,
Park
,
C. Y.
,
Wasserman
,
M. R.
,
Trepat
,
X.
,
Krishnan
,
R.
,
Lenormand
,
G.
,
Fredberg
,
J. J.
, and
Butler
,
J. P.
,
2010
, “
Mechanosensing of Substrate Thickness
,”
Phys. Rev. E
,
82
(
4
), p.
041918
.
26.
del Álamo
,
J. C.
,
Meili
,
R.
,
Álvarez-González
,
B.
,
Alonso-Latorre
,
B.
,
Bastounis
,
E.
,
Firtel
,
R.
, and
Lasheras
,
J. C.
,
2013
, “
Three-Dimensional Quantification of Cellular Traction Forces and Mechanosensing of Thin Substrata by Fourier Traction Force Microscopy
,”
PloS One
,
8
(
9
), p.
e69850
.
27.
Aghvami
,
M.
,
Rudnicki
,
M. S.
,
Cirka
,
H. A.
,
Zarkoob
,
H.
,
Billiar
,
K. L.
, and
Sander
,
E. A.
,
2013
, “
Non-Affine Fiber Network Model Predicts Longe-Range Stress Propagation Through Fibrous Gels
,”
Biomedical Engineering Society Annual Fall Meeting
, Seattle, WA.
28.
Vanni
,
S.
,
Lagerholm
,
B. C.
,
Otey
,
C.
,
Taylor
,
D. L.
, and
Lanni
,
F.
,
2003
, “
Internet-Based Image Analysis Quantifies Contractile Behavior of Individual Fibroblasts Inside Model Tissue
,”
Biophys. J.
,
84
(
4
), pp.
2715
2727
.
29.
Aghvami
,
M.
,
Barocas
, V
. H.
, and
Sander
,
E. A.
,
2013
, “
Multiscale Mechanical Simulations of Cell Compacted Collagen Gels
,”
ASME J. Biomech. Eng.
,
135
(
7
), p.
071004
.
30.
Notbohm
,
J.
,
Lesman
,
A.
,
Rosakis
,
P.
,
Tirrell
,
D. A.
, and
Ravichandran
,
G.
,
2015
, “
Microbuckling of Fibrin Provides a Mechanism for Cell Mechanosensing
,”
J. R. Soc., Interface
,
12
(
108
), p. 20150320.
31.
Abhilash
,
A. S.
,
Baker
,
B. M.
,
Trappmann
,
B.
,
Chen
,
C. S.
, and
Shenoy
,
V. B.
,
2014
, “
Remodeling of Fibrous Extracellular Matrices by Contractile Cells: Predictions From Discrete Fiber Network Simulations
,”
Biophys. J.
,
107
(
8
), pp.
1829
1840
.
32.
Reinhardt
,
J. W.
,
Krakauer
,
D. A.
, and
Gooch
,
K. J.
,
2013
, “
Complex Matrix Remodeling and Durotaxis Can Emerge From Simple Rules for Cell–Matrix Interaction in Agent-Based Models
,”
ASME J. Biomech. Eng.
,
135
(
7
), p.
071003
.
33.
Wen
,
Q.
, and
Janmey
,
P. A.
,
2011
, “
Polymer Physics of the Cytoskeleton
,”
Curr. Opin. Solid State Mater. Sci.
,
15
(
5
), pp.
177
182
.
34.
Munevar
,
S.
,
Wang
,
Y.
, and
Dembo
,
M.
,
2001
, “
Traction Force Microscopy of Migrating Normal and H-ras Transformed 3T3 Fibroblasts
,”
Biophys. J.
,
80
(
4
), pp.
1744
1757
.
35.
Yang
,
Z.
,
Lin
,
J. S.
,
Chen
,
J.
, and
Wang
,
J. H.
,
2006
, “
Determining Substrate Displacement and Cell Traction Fields—A New Approach
,”
J. Theor. Biol.
,
242
(
3
), pp.
607
616
.
36.
Yeoh
,
O. H.
,
1993
, “
Some Forms of the Strain-Energy Function for Rubber
,”
Rubber Chem. Technol.
,
66
(
5
), pp.
754
771
.
37.
Stylianopoulos
,
T.
, and
Barocas
,
V. H.
,
2007
, “
Volume-Averaging Theory for the Study of the Mechanics of Collagen Networks
,”
Comput. Methods Appl. Mech. Eng.
,
196
(
31–32
), pp.
2981
2990
.
38.
Sander
,
E. A.
, and
Barocas
,
V. H.
,
2009
, “
Comparison of 2D Fiber Network Orientation Measurement Methods
,”
J. Biomed. Mater. Res., Part A
,
88
(
2
), pp.
322
331
.
39.
Sander
,
E. A.
,
Stylianopoulos
,
T.
,
Tranquillo
,
R. T.
, and
Barocas
,
V. H.
,
2009
, “
Image-Based Biomechanics of Collagen-Based Tissue Equivalents
,”
IEEE Eng. Med. Biol. Mag.
,
28
(
3
), pp.
10
18
.
40.
Stylianopoulos
,
T.
,
Bashur
,
C. A.
,
Goldstein
,
A. S.
,
Guelcher
,
S. A.
, and
Barocas
,
V. H.
,
2008
, “
Computational Predictions of the Tensile Properties of Electrospun Fibre Meshes: Effect of Fibre Diameter and Fibre Orientation
,”
J. Mech. Behav. Biomed. Mater.
,
1
(
4
), pp.
326
335
.
41.
Stylianopoulos
,
T.
, and
Barocas
,
V. H.
,
2007
, “
Multiscale, Structure-Based Modeling for the Elastic Mechanical Behavior of Arterial Walls
,”
ASME J. Biomech. Eng.
,
129
(
4
), pp.
611
618
.
42.
Hadi
,
M. F.
,
Sander
,
E. A.
, and
Barocas
,
V. H.
,
2012
, “
Multiscale Model Predicts Tissue-Level Failure From Collagen Fiber-Level Damage
,”
ASME J. Biomech. Eng.
,
134
(
9
), p.
091005
.
43.
Billiar
,
K. L.
, and
Sacks
,
M. S.
,
2000
, “
Biaxial Mechanical Properties of the Native and Glutaraldehyde-Treated Aortic Valve Cusp: Part II—A Structural Constitutive Model
,”
ASME J. Biomech. Eng.
,
122
(
4
), pp.
327
335
.
44.
Bonet
,
J.
, and
Wood
,
R.
,
1997
,
Nonlinear Continuum Mechanics for Finite Element Analysis
,
Cambridge University Press
,
Cambridge, UK
.
45.
Chandran
,
P. L.
, and
Barocas
,
V. H.
,
2006
, “
Affine Versus Non-Affine Fibril Kinematics in Collagen Networks: Theoretical Studies of Network Behavior
,”
ASME J. Biomech. Eng.
,
128
(
2
), pp.
259
270
.
46.
Ma
,
X.
,
Schickel
,
M. E.
,
Stevenson
,
M. D.
,
Sarang-Sieminski
,
A. L.
,
Gooch
,
K. J.
,
Ghadiali
,
S. N.
, and
Hart
,
R. T.
,
2013
, “
Fibers in the Extracellular Matrix Enable Long-Range Stress Transmission Between Cells
,”
Biophys. J.
,
104
(
7
), pp.
1410
1418
.
47.
Mohammadi
,
H.
,
Arora
,
P. D.
,
Simmons
,
C. A.
,
Janmey
,
P. A.
, and
McCulloch
,
C. A.
,
2015
, “
Inelastic Behaviour of Collagen Networks in Cell–Matrix Interactions and Mechanosensation
,”
J. R. Soc., Interface
,
12
(
102
), p.
20141074
.
48.
Wang
,
H.
,
Abhilash
,
A. S.
,
Chen
,
C. S.
,
Wells
,
R. G.
, and
Shenoy
,
V. B.
,
2014
, “
Long-Range Force Transmission in Fibrous Matrices Enabled by Tension-Driven Alignment of Fibers
,”
Biophys. J.
,
107
(
11
), pp.
2592
2603
.
49.
Picu
,
R. C.
,
2011
, “
Mechanics of Random Fiber Networks—A Review
,”
Soft Matter
,
7
(
15
), pp.
6768
6785
.
50.
Sander
,
E.
,
Stein
,
A.
,
Swickrath
,
M.
, and
Barocas
,
V.
,
2010
, “
Out of Many, One: Modeling Schemes for Biopolymer and Biofibril Networks
,”
Trends in Computational Nanomechanics
,
Springer
,
The Netherlands
, pp.
557
602
.
51.
Chandran
,
P. L.
, and
Barocas
,
V. H.
,
2007
, “
Deterministic Material-Based Averaging Theory Model of Collagen Gel Micromechanics
,”
ASME J. Biomech. Eng.
,
129
(
2
), pp.
137
147
.
52.
Sander
,
E. A.
,
Stylianopoulos
,
T.
,
Tranquillo
,
R. T.
, and
Barocas
,
V. H.
,
2009
, “
Image-Based Multiscale Modeling Predicts Tissue-Level and Network-Level Fiber Reorganization in Stretched Cell-Compacted Collagen Gels
,”
Proc. Natl. Acad. Sci. U.S.A.
,
106
(
42
), pp.
17675
17680
.
53.
Hadi
,
M. F.
,
Sander
,
E. A.
,
Ruberti
,
J. W.
, and
Barocas
,
V. H.
,
2012
, “
Simulated Remodeling of Loaded Collagen Networks Via Strain-Dependent Enzymatic Degradation and Constant-Rate Fiber Growth
,”
Mech. Mater.
,
44
, pp.
72
82
.
54.
Gibson
,
L. J.
,
2005
, “
Biomechanics of Cellular Solids
,”
J. Biomech.
,
38
(
3
), pp.
377
399
.
55.
Deshpande
,
V. S.
,
McMeeking
,
R. M.
, and
Evans
,
A. G.
,
2006
, “
A Bio-Chemo-Mechanical Model for Cell Contractility
,”
Proc. Natl. Acad. Sci. U.S.A.
,
103
(
38
), pp.
14015
14020
.
You do not currently have access to this content.