Prior studies have assessed the effects of load carriage on the tibia. Here, we expand on these studies and investigate the effects of load carriage on joint reaction forces (JRFs) and the resulting spatiotemporal stress/strain distributions in the tibia. Using full-body motion and ground reaction forces from a female subject, we computed joint and muscle forces during walking for four load carriage conditions. We applied these forces as physiological loading conditions in a finite-element (FE) analysis to compute strain and stress. We derived material properties from computed tomography (CT) images of a sex-, age-, and body mass index-matched subject using a mesh morphing and mapping algorithm, and used them within the FE model. Compared to walking with no load, the knee JRFs were the most sensitive to load carriage, increasing by as much as 26.2% when carrying a 30% of body weight (BW) load (ankle: 16.4% and hip: 19.0%). Moreover, our model revealed disproportionate increases in internal JRFs with increases in load carriage, suggesting a coordinated adjustment in the musculature functions in the lower extremity. FE results reflected the complex effects of spatially varying material properties distribution and muscular engagement on tibial biomechanics during walking. We observed high stresses on the anterior crest and the medial surface of the tibia at pushoff, whereas high cumulative stress during one walking cycle was more prominent in the medioposterior aspect of the tibia. Our findings reinforce the need to include: (1) physiologically accurate loading conditions when modeling healthy subjects undergoing short-term exercise training and (2) the duration of stress exposure when evaluating stress-fracture injury risk. As a fundamental step toward understanding the instantaneous effect of external loading, our study presents a means to assess the relationship between load carriage and bone biomechanics.

References

1.
Jones
,
B. H.
, and
Hansen
,
B. C.
,
2000
, “
An Armed Forces Epidemiological Board Evaluation of Injuries in the Military
,”
Am. J. Prev. Med.
,
18
(Suppl.
3
), pp.
14
25
.
2.
Shaffer
,
R. A.
,
Rauh
,
M. J.
,
Brodine
,
S. K.
,
Trone
,
D. W.
, and
Macera
,
C. A.
,
2006
, “
Predictors of Stress Fracture Susceptibility in Young Female Recruits
,”
Am. J. Sports Med.
,
34
(
1
), pp.
108
115
.
3.
Jones
,
B. H.
,
Perrotta
,
D. M.
,
Canham-Chervak
,
M. L.
,
Nee
,
M. A.
, and
Brundage
,
J. F.
,
2000
, “
Injuries in the Military: A Review and Commentary Focused on Prevention
,”
Am. J. Prev. Med.
,
18
(Suppl.
3
), pp.
71
84
.
4.
Seay
,
J. F.
,
Fellin
,
R. E.
,
Sauer
,
S. G.
,
Frykman
,
P. N.
, and
Bensel
,
C. K.
,
2014
, “
Lower Extremity Biomechanical Changes Associated With Symmetrical Torso Loading During Simulated Marching
,”
Mil. Med.
,
179
(
1
), pp.
85
91
.
5.
Silder
,
A.
,
Delp
,
S. L.
, and
Besier
,
T.
,
2013
, “
Men and Women Adopt Similar Walking Mechanics and Muscle Activation Patterns During Load Carriage
,”
J. Biomech.
,
46
(
14
), pp.
2522
2528
.
6.
Neumann
,
D. A.
, and
Hase
,
A. D.
,
1994
, “
An Electromyographic Analysis of the Hip Abductors During Load Carriage: Implications for Hip Joint Protection
,”
J. Orthop. Sports Phys. Ther.
,
19
(
5
), pp.
296
304
.
7.
Burr
,
D. B.
,
2011
, “
Why Bones Bend But Don't Break
,”
J. Musculoskelet. Neuronal. Interact
,
11
(
4
), pp.
270
285
.
8.
Martin
,
R. B.
, and
Burr
,
D. B.
,
1982
, “
A Hypothetical Mechanism for the Stimulation of Osteonal Remodelling by Fatigue Damage
,”
J. Biomech.
,
15
(
3
), pp.
137
139
.
9.
Kutzner
,
I.
,
Heinlein
,
B.
,
Graichen
,
F.
,
Bender
,
A.
,
Rohlmann
,
A.
,
Halder
,
A.
,
Beier
,
A.
, and
Bergmann
,
G.
,
2010
, “
Loading of the Knee Joint During Activities of Daily Living Measured In Vivo in Five Subjects
,”
J. Biomech.
,
43
(
11
), pp.
2164
2173
.
10.
Morrison
,
J. B.
,
1969
, “
Function of the Knee Joint in Various Activities
,”
Biomed. Eng.
,
4
(
12
), pp.
573
580
.
11.
Yang
,
P. F.
,
Bruggemann
,
G. P.
, and
Rittweger
,
J.
,
2011
, “
What Do We Currently Know From In Vivo Bone Strain Measurements in Humans?
J. Musculoskelet. Neuronal. Interact
,
11
(
1
), pp.
8
20
.
12.
Milgrom
,
C.
,
Finestone
,
A.
,
Simkin
,
A.
,
Ekenman
,
I.
,
Mendelson
,
S.
,
Millgram
,
M.
,
Nyska
,
M.
,
Larsson
,
E.
, and
Burr
,
D.
,
2000
, “
In-Vivo Strain Measurements to Evaluate the Strengthening Potential of Exercises on the Tibial Bone
,”
J. Bone Jt. Surg. Br.
,
82
(
4
), pp.
591
594
.
13.
Kinney
,
A. L.
,
Besier
,
T. F.
,
D’Lima
,
D. D.
, and
Fregly
,
B. J.
,
2013
, “
Update on Grand Challenge Competition to Predict In Vivo Knee Loads
,”
ASME J. Biomech. Eng.
,
135
(
2
), p.
021012
.
14.
Damsgaard
,
M.
,
Rasmussen
,
J.
,
Christensen
,
S. T.
,
Surma
,
E.
, and
Zee
,
M.
,
2006
, “
Analysis of Musculoskeletal Systems in the AnyBody Modeling System
,”
Simul. Modell. Pract. Theory
,
14
(
8
), pp.
1100
1111
.
15.
Manders
,
C.
,
New
,
A.
, and
Rasmussen.
,
J.
,
2008
, “
Validation of Musculoskeletal Gait Simulation for Use in Investigation of Total Hip Replacement
,”
J. Biomech.
,
41
(
S1
), p.
S488
.
16.
Gaofeng
,
W.
,
Xueling
,
B.
,
Hongsheng
,
W.
,
Zengliang
,
F.
, and
Chengtao
,
W.
,
2009
, “
Component Mode Synthesis Approach to Estimate Tibial Strains in Gait
,”
J. Med. Eng. Technol.
,
33
(
6
), pp.
488
495
.
17.
Poelert
,
S.
,
Valstar
,
E.
,
Weinans
,
H.
, and
Zadpoor
,
A. A.
,
2013
, “
Patient-Specific Finite Element Modeling of Bones
,”
Proc. Inst. Mech. Eng., Part H
,
227
(
4
), pp.
464
478
.
18.
Dragomir-Daescu
,
D.
,
Salas
,
C.
,
Uthamaraj
,
S.
, and
Rossman
,
T.
,
2015
, “
Quantitative Computed Tomography-Based Finite Element Analysis Predictions of Femoral Strength and Stiffness Depend on Computed Tomography Settings
,”
J. Biomech.
,
48
(
1
), pp.
153
161
.
19.
Carbone
,
V.
,
Fluit
,
R.
,
Pellikaan
,
P.
,
van der Krogt
,
M. M.
,
Janssen
,
D.
,
Damsgaard
,
M.
,
Vigneron
,
L.
,
Feilkas
,
T.
,
Koopman
,
H. F.
, and
Verdonschot
,
N.
,
2015
, “
TLEM 2.0—A Comprehensive Musculoskeletal Geometry Dataset for Subject-Specific Modeling of Lower Extremity
,”
J. Biomech.
,
48
(
5
), pp.
734
741
.
20.
Klein Horsman
,
M. D.
,
Koopman
,
H. F.
,
van der Helm
,
F. C.
,
Prose
,
L. P.
, and
Veeger
,
H. E.
,
2007
, “
Morphological Muscle and Joint Parameters for Musculoskeletal Modelling of the Lower Extremity
,”
Clin. Biomech.
,
22
(
2
), pp.
239
247
.
21.
Andersen
,
M. S.
,
Damsgaard
,
M.
,
MacWilliams
,
B.
, and
Rasmussen
,
J.
,
2010
, “
A Computationally Efficient Optimisation-Based Method for Parameter Identification of Kinematically Determinate and Over-Determinate Biomechanical Systems
,”
Comput. Methods Biomech. Biomed. Eng.
,
13
(
2
), pp.
171
183
.
22.
Taddei
,
F.
,
Cristofolini
,
L.
,
Martelli
,
S.
,
Gill
,
H. S.
, and
Viceconti
,
M.
,
2006
, “
Subject-Specific Finite Element Models of Long Bones: An In Vitro Evaluation of the Overall Accuracy
,”
J. Biomech.
,
39
(
13
), pp.
2457
2467
.
23.
Fernandez
,
J. W.
,
Mithraratne
,
P.
,
Thrupp
,
S. F.
,
Tawhai
,
M. H.
, and
Hunter
,
P. J.
,
2004
, “
Anatomically Based Geometric Modelling of the Musculo-Skeletal System and Other Organs
,”
Biomech. Model Mechanobiol.
,
2
(
3
), pp.
139
155
.
24.
Zhang
,
J.
,
Sorby
,
H.
,
Clement
,
J.
,
Thomas
,
C. D. L.
,
Hunter
,
P.
,
Nielsen
,
P.
,
Lloyd
,
D.
,
Taylor
,
M.
, and
Besier
,
T.
,
2014
, “
The MAP Client: User-Friendly Musculoskeletal Modelling Workflows
,”
6th International Symposium, ISBMS 2014
, F. Bello and S. Cotin, eds. Strasbourg, France, pp.
182
192
.
25.
Bradley
,
C. P.
,
Pullan
,
A. J.
, and
Hunter
,
P. J.
,
1997
, “
Geometric Modeling of the Human Torso Using Cubic Hermite Elements
,”
Ann. Biomed. Eng.
,
25
(
1
), pp.
96
111
.
26.
Morgan
,
E. F.
,
Bayraktar
,
H. H.
, and
Keaveny
,
T. M.
,
2003
, “
Trabecular Bone Modulus-Density Relationships Depend on Anatomic Site
,”
J. Biomech.
,
36
(
7
), pp.
897
904
.
27.
Sandino
,
C.
,
McErlain
,
D. D.
,
Schipilow
,
J.
, and
Boyd
,
S. K.
,
2015
, “
The Poro-Viscoelastic Properties of Trabecular Bone: A Micro Computed Tomography-Based Finite Element Study
,”
J. Mech. Behav. Biomed. Mater.
,
44
, pp.
1
9
.
28.
Maxian
,
T. A.
,
Brown
,
T. D.
, and
Weinstein
,
S. L.
,
1995
, “
Chronic Stress Tolerance Levels for Human Articular Cartilage: Two Nonuniform Contact Models Applied to Long-Term Follow-Up of CDH
,”
J. Biomech.
,
28
(
2
), pp.
159
166
.
29.
Bergmann
,
G.
,
Graichen
,
F.
, and
Rohlmann
,
A.
,
1993
, “
Hip Joint Loading During Walking and Running, Measured in Two Patients
,”
J. Biomech.
,
26
(
8
), pp.
969
990
.
30.
Bergmann
,
G.
,
Deuretzbacher
,
G.
,
Heller
,
M.
,
Graichen
,
F.
,
Rohlmann
,
A.
,
Strauss
,
J.
, and
Duda
,
G. N.
,
2001
, “
Hip Contact Forces and Gait Patterns From Routine Activities
,”
J. Biomech.
,
34
(
7
), pp.
859
871
.
31.
Brand
,
R. A.
,
Pedersen
,
D. R.
,
Davy
,
D. T.
,
Kotzar
,
G. M.
,
Heiple
,
K. G.
, and
Goldberg
, V
. M.
,
1994
, “
Comparison of Hip Force Calculations and Measurements in the Same Patient
,”
J. Arthroplasty
,
9
(
1
), pp.
45
51
.
32.
D’Lima
,
D. D.
,
Patil
,
S.
,
Steklov
,
N.
,
Slamin
,
J. E.
, and
Colwell
,
C. W.
, Jr.
,
2005
, “
The Chitranjan Ranawat Award: In Vivo Knee Forces After Total Knee Arthroplasty
,”
Clin. Orthop. Relat. Res.
,
440
, pp.
45
49
.
33.
Taylor
,
S. J.
,
Walker
,
P. S.
,
Perry
,
J. S.
,
Cannon
,
S. R.
, and
Woledge
,
R.
,
1998
, “
The Forces in the Distal Femur and the Knee During Walking and Other Activities Measured by Telemetry
,”
J. Arthroplasty
,
13
(
4
), pp.
428
437
.
34.
Taylor
,
S. J.
, and
Walker
,
P. S.
,
2001
, “
Forces and Moments Telemetered From Two Distal Femoral Replacements During Various Activities
,”
J. Biomech.
,
34
(
7
), pp.
839
848
.
35.
Lu
,
T. W.
,
Taylor
,
S. J.
,
O’Connor
,
J. J.
, and
Walker
,
P. S.
,
1997
, “
Influence of Muscle Activity on the Forces in the Femur: An In Vivo Study
,”
J. Biomech.
,
30
(
11–12
), pp.
1101
1106
.
36.
Hamner
,
S. R.
,
Seth
,
A.
, and
Delp
,
S. L.
,
2010
, “
Muscle Contributions to Propulsion and Support During Running
,”
J. Biomech.
,
43
(
14
), pp.
2709
2716
.
37.
Hillam
,
R. A.
,
Goodship
,
A. E.
, and
Skerry
,
T. M.
,
2015
, “
Peak Strain Magnitudes and Rates in the Tibia Exceed Greatly Those in the Skull: An In Vivo Study in a Human Subject
,”
J. Biomech.
,
48
(
12
), pp.
3292
3298
.
38.
Al Nazer
,
R.
,
Lanovaz
,
J.
,
Kawalilak
,
C.
,
Johnston
,
J. D.
, and
Kontulainen
,
S.
,
2012
, “
Direct In Vivo Strain Measurements in Human Bone: A Systematic Literature Review
,”
J. Biomech.
,
45
(
1
), pp.
27
40
.
39.
Detmer
,
D. E.
,
Sharpe
,
K.
,
Sufit
,
R. L.
, and
Girdley
,
F. M.
,
1985
, “
Chronic Compartment Syndrome: Diagnosis, Management, and Outcomes
,”
Am. J. Sports Med.
,
13
(
3
), pp.
162
170
.
40.
Matheson
,
G. O.
,
Clement
,
D. B.
,
McKenzie
,
D. C.
,
Taunton
,
J. E.
,
Lloyd-Smith
,
D. R.
, and
MacIntyre
,
J. G.
,
1987
, “
Stress Fractures in Athletes. A Study of 320 Cases
,”
Am. J. Sports Med.
,
15
(
1
), pp.
46
58
.
41.
Bennell
,
K. L.
, and
Brukner
,
P. D.
,
1997
, “
Epidemiology and Site Specificity of Stress Fractures
,”
Clin. Sports Med.
,
16
(
2
), pp.
179
196
.
42.
Huang
,
T. W.
, and
Kuo
,
A. D.
,
2014
, “
Mechanics and Energetics of Load Carriage During Human Walking
,”
J. Exp. Biol.
,
217
(Pt.
4
), pp.
605
613
.
43.
Keller
,
T. S.
,
Weisberger
,
A. M.
,
Ray
,
J. L.
,
Hasan
,
S. S.
,
Shiavi
,
R. G.
, and
Spengler
,
D. M.
,
1996
, “
Relationship Between Vertical Ground Reaction Force and Speed During Walking, Slow Jogging, and Running
,”
Clin. Biomech.
,
11
(
5
), pp.
253
259
.
44.
Komi
,
P. V.
,
Fukashiro
,
S.
, and
Jarvinen
,
M.
,
1992
, “
Biomechanical Loading of Achilles Tendon During Normal Locomotion
,”
Clin. Sports Med.
,
11
(
3
), pp.
521
531
.
45.
Yoshikawa
,
T.
,
Mori
,
S.
,
Santiesteban
,
A. J.
,
Sun
,
T. C.
,
Hafstad
,
E.
,
Chen
,
J.
, and
Burr
,
D. B.
,
1994
, “
The Effects of Muscle Fatigue on Bone Strain
,”
J. Exp. Biol.
,
188
, pp.
217
233
.
46.
Majewski
,
M.
,
Susanne
,
H.
, and
Klaus
,
S.
,
2006
, “
Epidemiology of Athletic Knee Injuries: A 10-Year Study
,”
Knee
,
13
(
3
), pp.
184
188
.
47.
Burr
,
D. B.
,
Forwood
,
M. R.
,
Fyhrie
,
D. P.
,
Martin
,
R. B.
,
Schaffler
,
M. B.
, and
Turner
,
C. H.
,
1997
, “
Bone Microdamage and Skeletal Fragility in Osteoporotic and Stress Fractures
,”
J. Bone Miner. Res.
,
12
(
1
), pp.
6
15
.
48.
Demers
,
M. S.
,
Pal
,
S.
, and
Delp
,
S. L.
,
2014
, “
Changes in Tibiofemoral Forces Due to Variations in Muscle Activity During Walking
,”
J. Orthop. Res.
,
32
(
6
), pp.
769
776
.
49.
Schneider
,
E.
,
Michel
,
M. C.
,
Genge
,
M.
,
Zuber
,
K.
,
Ganz
,
R.
, and
Perren
,
S. M.
,
2001
, “
Loads Acting in an Intramedullary Nail During Fracture Healing in the Human Femur
,”
J. Biomech.
,
34
(
7
), pp.
849
857
.
50.
Cavanagh
,
P. R.
, and
Komi
,
P. V.
,
1979
, “
Electromechanical Delay in Human Skeletal Muscle Under Concentric and Eccentric Contractions
,”
Eur. J. Appl. Physiol. Occup. Physiol.
,
42
(
3
), pp.
159
163
.
51.
Yang
,
N. H.
,
Nayeb-Hashemi
,
H.
,
Canavan
,
P. K.
, and
Vaziri
,
A.
,
2010
, “
Effect of Frontal Plane Tibiofemoral Angle on the Stress and Strain at the Knee Cartilage During the Stance Phase of Gait
,”
J. Orthop. Res.
,
28
(
12
), pp.
1539
1547
.
52.
Lu
,
Y. C.
, and
Untaroiu
,
C. D.
,
2013
, “
Statistical Shape Analysis of Clavicular Cortical Bone With Applications to the Development of Mean and Boundary Shape Models
,”
Comput. Methods Prog. Biomed.
,
111
(
3
), pp.
613
628
.
You do not currently have access to this content.