The human hand has a wide range of possible functional abilities that can change with age, disease, and injury, and can vary from individual to individual and subsequently can affect a person's quality of life. The objective of this work was to develop a theoretical model of the space that is reachable by the hand, weighted to represent three types of functionality, and to compare this model to an experimental data set obtained from a healthy hand population. A theoretical model, termed the Weighted Fingertip Space, was developed using 50th percentile published hand data and ranges of finger motion. The functional abilities calculated in the model were the abilities to position the fingertip pad, orient the fingertip pad, and apply directional forces through the fingertip pad at all the reachable points in space with respect to the palm. Following the development of this theoretical model, experimental data sets from nine individuals with healthy hands were obtained through motion capture techniques. The experimental data were then compared to the theoretical model. Comparisons between a 50th percentile theoretical model and a subject with a similar sized hand showed good agreement in weighting parameters and overall size and shape of the model spaces. The experimental data set from the entire sample, which ranged from the 2nd to 95th percentile hand sizes, showed resultant models that, on average, reached smaller volumes of space, but yielded higher values of the functional measures within those volumes. Additionally, in comparison to the theoretical model, the variability of the experimental models showed that small changes in hand dimensions and ranges of motion of the finger joints had a large influence in the functional measures of the model. Combined, these results suggest that the modeling technique can calculate functional ability of the hand, but should be used on an individualized basis for evaluating changes in function (e.g., rehabilitation). Further, scaling to hand size has the potential to yield “average” models for larger population samples.

References

1.
Verbrugge
,
L. M.
, and
Patrick
,
D. L.
,
1995
, “
Seven Chronic Conditions: Their Impact on US Adults' Activity Levels and Use of Medical Services
,”
Am. J. Public Health
,
85
(
2
), pp.
173
182
.10.2105/AJPH.85.2.173
2.
Covinsky
,
K. E.
,
Lindquist
,
K.
,
Dunlop
,
D. D.
,
Gill
,
T. M.
, and
Yelin
,
E.
,
2008
, “
Effect of Arthritis in Middle Age on Older-Age Functioning
,”
J. Am. Geriatrics Soc.
,
56
(
1
), pp.
23
28
.10.1111/j.1532-5415.2007.01511.x
3.
Verbrugge
,
L. M.
,
Lepkowski
,
J. M.
, and
Konkol
,
L. L.
,
1991
, “
Levels of Disability Among U.S. Adults With Arthritis
,”
J. Gerontology
,
46
(
2
), pp.
S71
S83
.10.1093/geronj/46.2.S71
4.
Dellhag
,
B.
, and
Bjelle
,
A.
,
1999
, “
A Five-Year Followup of Hand Function and Activities of Daily Living in Rheumatoid Arthritis Patients
,”
Arthritis Care Res
,
12
(
1
), pp.
33
41
.10.1002/1529-0131(199902)12:1<33::AID-ART6>3.0.CO;2-4
5.
Chung
,
K. C.
,
Pillsbury
,
M. S.
,
Walters
,
M. R.
, and
Hayward
,
R. a.
,
1998
, “
Reliability and Validity Testing of the Michigan Hand Outcomes Questionnaire
,”
J. Hand Surgery
,
23
(
4
), pp.
575
587
.10.1016/S0363-5023(98)80042-7
6.
Beaton
,
D. E.
,
Katz
,
J. N.
,
Fossel
.,
a. H.
,
Wright
,
J. G.
,
Tarasuk
,
V.
, and
Bombardier
,
C.
,
2001
, “
Measuring the Whole or the Parts? Validity, Reliability, and Responsiveness of the Disabilities of the Arm, Shoulder and Hand Outcome Measure in Different Regions of the Upper Extremity
,”
J. Hand Ther
,
14
(
2
), pp.
128
146
.10.1016/S0894-1130(01)80043-0
7.
Demirbilek
,
O.
, and
Demirkan
,
H.
,
2004
, “
Universal Product Design Involving Elderly Users: A Participatory Design Model
,”
Appl. Ergonomics
,
35
(
4
), pp.
361
370
.10.1016/j.apergo.2004.03.003
8.
Clarkson
,
P. L. P. J.
, and
Robinson
,
P.
,
2010
,
Designing Inclusive Interactions
,
Springer
,
London
.
9.
Bix
,
L.
,
de la Fuente
,
J.
,
Pimple
,
K. D.
, and
Kou
,
E.
,
2009
, “
Is the Test of Senior Friendly/Child Resistant Packaging Ethical?
,”
Health Expect
,
12
(
4
), pp.
430
437
.10.1111/j.1369-7625.2009.00534.x
10.
Carmeli
,
E.
,
Patish
,
H.
, and
Coleman
,
R.
,
2003
, “
The Aging Hand
,”
J. Gerontol. Ser. ABiol. Sci. Med. Sci.
,
58
(
2
), pp.
146
152
.10.1093/gerona/58.2.M146
11.
Rønningen
,
A.
, and
Kjeken
,
I.
,
2008
, “
Effect of an Intensive Hand Exercise Programme in Patients With Rheumatoid Arthritis
,”
Scand. J. Occup. Ther
,
15
(
3
), pp.
173
183
.10.1080/11038120802031129
12.
Ranganathan
,
V. K.
,
Siemionow
,
V.
,
Sahgal
,
V.
, and
Yue
,
G. H.
,
2001
, “
Effects of Aging on Hand Function
,”
J. Am. Geriatrics Soc.
,
49
(
11
), pp.
1478
1484
.10.1046/j.1532-5415.2001.4911240.x
13.
Carpinella
,
I.
,
Jonsdottir
,
J.
, and
Ferrarin
,
M.
,
2011
, “
Multi-Finger Coordination in Healthy Subjects and Stroke Patients: A Mathematical Modelling Approach
,”
J. Neuroeng. Rehab.
,
8
, p.
19
.10.1186/1743-0003-8-19
14.
Carpinella
,
I.
,
Mazzoleni
,
P.
,
Rabuffetti
,
A.
,
Thorsen
,
R.
, and
Ferrarin
,
M.
,
2006
, “
Experimental Protocol for the Kinematic Analysis of the Hand: Definition and Repeatability
,”
Gait & Posture
,
23
(
4
), pp.
445
454
.10.1016/j.gaitpost.2005.05.001
15.
Zhou
,
H. Y.
, and
Hu
,
H. S.
,
2008
, “
Human Motion Tracking for Rehabilitation-A Survey
,”
Biomed. Signal Process. Control
,
3
(
1
), pp.
1
18
.10.1016/j.bspc.2007.09.001
16.
Su
,
F. C.
,
Kuo
,
L. C.
,
Chiu
,
H. Y.
, and
Chen-Sea
,
M. J.
,
2003
, “
Video-Computer Quantitative Evaluation of Thumb Function Using Workspace of the Thumb
,”
J. Biomech.
,
36
(
7
), pp.
937
942
.10.1016/S0021-9290(03)00073-3
17.
Cruz
,
E. G.
,
Waldinger
,
H. C.
, and
Kamper
,
D. G.
,
2005
, “
Kinetic and Kinematic Workspaces of the Index Finger Following Stroke
,”
Brain: A Journal of Neurology
,
128
(
Pt 5
), pp.
1112
1121
.10.1093/brain/awh432
18.
Kuo
,
L. C.
,
Chiu
,
H. Y.
,
Chang
,
C. W.
,
Hsu
,
H. Y.
, and
Sun
,
Y. N.
,
2009
, “
Functional Workspace for Precision Manipulation Between Thumb and Fingers in Normal Hands
,”
J. Electromyogr. Kinesiol
,
19
(
5
), pp.
829
839
.10.1016/j.jelekin.2008.07.008
19.
Dragulescu
,
D.
,
Perdereau
,
V.
,
Drouin
,
M.
,
Ungureanu
,
L.
, and
Menyhardt
,
K.
,
2007
, “
3D Active Workspace of Human Hand Anatomical Model
,”
Biomed. Eng. Online
,
6
.
20.
Zheng
,
R.
, and
Li
,
J.
,
2010
, “
Kinematics and Workspace Analysis of an Exoskeleton for Thumb and Index Finger Rehabilitation
,”
2010 IEEE International Conference on Robotics and Biomimetics
, pp.
80
84
.
21.
Greiner
,
T.
,
1991
, “
Hand Anthropometry of US Army Personnel
,”
Security
,
TR-92/011
, p.
434
.
22.
Porter
,
R. S.
, and
Kaplan
,
J. L.
,
2011
,
The Merck Manual for Health Care Professionals
,
Merck and Co
.
23.
Lin
,
J.
,
Wu
,
Y.
, and
Huang
,
T. S.
,
2000
, “
Modeling the Constraints of Human Hand Motion
,”
IEEE Proceedings from Workshop on Human Motion
, pp.
121
126
.
24.
Lee
,
J. T.
, and
Kunii
,
T. L.
,
1995
, “
Model-Based Analysis of Hand Posture
,”
IEEE Comput. Graph. Appl.
,
15
(
5
), pp.
77
86
.10.1109/38.403831
25.
Brand
,
P. W.
, and
Hollister
,
A. M.
,
1999
,
Clinical Mechanics of the Hand
,
Mosby, Inc
.
26.
Denavit
,
J.
, and
Hartenberg
,
R. S.
,
1955
, “
A Kinematic Notation for Lower Pair Mechanisms
,”
Appl. Mech.
,
22
, pp.
215
221
.
27.
Spong
,
M. W.
,
Hutchinson
,
S.
, and
Vidyagasar
,
M.
,
2006
,
Robot Modeling and Control
,
John Wiley & Sons, Inc.
,
New York
.
28.
Santos
,
V. J.
, and
Valero-Cuevas
,
F. J.
,
2006
, “
Reported Anatomical Variability Naturally Leads to Multimodal Distributions of Denavit-Hartenberg Parameters for the Human Thumb
,”
IEEE Trans. Biomed. Eng.
,
53
(
2
), pp.
155
163
.10.1109/TBME.2005.862537
29.
Johnson
,
R.
,
Yang
,
J.
, and
Long
,
J.
,
2010
, “
Finger Reach Envelope Using the Marching Cubes Method
,”
J. Human Factors Modell. Simul.
,
1
(
3
), pp.
321
338
.10.1504/IJHFMS.2010.036794
30.
Tang
,
J.
,
Zhang
,
X. D.
, and
Li
,
Z. M.
,
2008
, “
Operational and Maximal Workspace of the Thumb
,”
Ergonomics
,
51
(
7
), pp.
1109
1118
.10.1080/00140130801958667
31.
Wu
,
G.
,
van der Helm
,
F. C. T.
,
Veeger
,
H. E. J.
,
Makhsous
,
M.
,
Van Roy
,
P.
,
Anglin
,
C.
,
Nagels
,
J.
,
Karduna
,
A. R.
,
McQuade
,
K.
,
Wang
,
X. G.
,
Werner
,
F. W.
, and
Buchholz
,
B.
,
2005
, “
ISB Recommendation on Definitions of Joint Coordinate Systems of Various Joints for the Reporting of Human Joint Motion—Part II: Shoulder, Elbow, Wrist and Hand
,”
J. Biomech.
,
38
(
5
), pp.
981
992
.10.1016/j.jbiomech.2004.05.042
32.
El-shennawy
,
M.
,
Nakamura
,
K.
,
Patterson
,
R. M.
, and
Viegas
,
S. F.
,
2001
, “
Three-Dimensional Kinematic Analysis of the Second Through Fifth Carpometacarpal Joints
,”
J. Hand Surgery
,
26
(
6
), pp.
1030
1035
.10.1053/jhsu.2001.28761
33.
Li
,
Z. M.
,
Kuxhaus
,
L.
,
Fisk
,
J. A.
, and
Christophel
,
T. H.
,
2005
, “
Coupling Between Wrist Flexion-Extension and Radial-Ulnar Deviation
,”
Clin. Biomech.
,
20
(
2
), pp.
177
183
.10.1016/j.clinbiomech.2004.10.002
You do not currently have access to this content.