Posterior wall fracture is one of the most common fracture types of the acetabulum and a conventional approach is to perform open reduction and internal fixation with a plate and screws. Percutaneous screw fixations, on the other hand, have recently gained attention due to their benefits such as less exposure and minimization of blood loss. However their biomechanical stability, especially in terms interfragmentary movement, has not been investigated thoroughly. The aims of this study are twofold: (1) to measure the interfragmentary movements in the conventional open approach with plate fixations and the percutaneous screw fixations in the acetabular fractures and compare them; and (2) to develop and validate a fast and efficient way of predicting the interfragmentary movement in percutaneous fixation of posterior wall fractures of the acetabulum using a 3D finite element (FE) model of the pelvis. Our results indicate that in single fragment fractures of the posterior wall of the acetabulum, plate fixations give superior stability to screw fixations. However screw fixations also give reasonable stability as the average gap between fragment and the bone remained less than 1 mm when the maximum load was applied. Our finite element model predicted the stability of screw fixation with good accuracy. Moreover, when the screw positions were optimized, the stability predicted by our FE model was comparable to the stability obtained by plate fixations. Our study has shown that FE modeling can be useful in examining biomechanical stability of osteosynthesis and can potentially be used in surgical planning of osteosynthesis.

References

1.
Baumgaertner
,
M. R.
, 1999, “
Fractures of the Posterior Wall of the Acetabulum
,”
J. Am. Acad. Orthop. Surg.
,
7
, pp.
54
65
.
2.
Shuler
,
T. E.
,
Boone
,
D. C.
,
Gruen
,
G. S.
, and
Peitzman
,
A. B.
, 1995, “
Percutaneous Iliosacral Screw Fixation: Early Treatment for Unstable Posterior Pelvic Ring Disruptions
,”
J. Trauma
,
38
, pp.
453
458
.
3.
Parker
,
P. J.
, and
Copeland
,
C.
, 1997, “
Percutaneous Fluroscopic Screw Fixation of Acetabular Fractures
,”
Injury
,
28
, pp.
597
600
.
4.
Goulet
,
J. A.
,
Rouleau
,
J. P.
,
Mason
,
D. J.
, and
Goldstein
,
S. A.
, 1994, “
Comminuted Fractures of the Posterior Wall of the Acetabulum. A Biomechanical Evaluation of Fixation Methods
,”
J. Bone Joint Surg. Am.
,
76
, pp.
1457
1463
.
5.
Zoys
,
G. N.
,
McGanity
,
P. L.
,
Lanctot
,
D. R.
,
Athanasiou
,
K. A.
, and
Heckman
,
J. D.
, 1999, “
Biomechanical Evaluation of Fixation of Posterior Acetabular Wall Fractures
,”
J. South Orthop. Assoc.
,
8
, pp.
254
260
, discussion 260.
6.
Klein
,
P.
,
Schell
,
H.
,
Streitparth
,
F.
,
Heller
,
M.
,
Kassi
,
J. P.
,
Kandziora
,
F.
,
Bragulla
,
H.
,
Haas
,
N. P.
, and
Duda
,
G. N.
, 2003, “
The Initial Phase of Fracture Healing Is Specifically Sensitive to Mechanical Conditions
,”
J. Orthop. Res.
,
21
, pp.
662
669
.
7.
Wehner
,
T.
,
Penzkofer
,
R.
,
Augat
,
P.
,
Claes
,
L.
, and
Simon
,
U.
, 2011, “
Improvement of the Shear Fixation Stability of Intramedullary Nailing
,”
Clin. Biomech. (Bristol, Avon)
,
26
, pp.
147
151
.
8.
Attias
,
N.
,
Lindsey
,
R. W.
,
Starr
,
A. J.
,
Borer
,
D.
,
Bridges
,
K.
, and
Hipp
,
J. A.
, 2005, “
The Use of a Virtual Three-Dimensional Model to Evaluate the Intraosseous Space Available for Percutaneous Screw Fixation of Acetabular Fractures
,”
J. Bone Joint Surg. Br.
,
87
, pp.
1520
1523
.
9.
Cimerman
,
M.
, and
Kristan
,
A.
, 2007, “
Preoperative Planning in Pelvic and Acetabular Surgery: The Value of Advanced Computerised Planning Modules
,”
Injury
,
38
, pp.
442
449
.
10.
Shim
,
V.
,
Bohme
,
J.
,
Vaitl
,
P.
,
Klima
,
S.
,
Josten
,
C.
, and
Anderson
,
I.
, 2010, “
Finite Element Analysis of Acetabular Fractures—Development and Validation With a Synthetic Pelvis
,”
J. Biomech.
,
43
, pp.
1635
1639
.
11.
Letournel
,
E.
, 1980, “
Acetabulum Fractures: Classification and Management
,”
Clin. Orthop. Relat. Res.
,
151
, pp.
81
106
.
12.
Shim
,
V. B.
,
Pitto
,
R. P.
,
Streicher
,
R. M.
,
Hunter
,
P. J.
,
Anderson
,
I. A.
, 2007, “
The Use of Sparse CT Datasets for Auto-generating Accurate FE Models of the Femur and Pelvis
,”
J. Biomech.
,
40
, pp.
26
35
.
13.
Bradley
,
C. P.
,
Pullan
,
A. J.
, and
Hunter
,
P. J.
, 1997, “
Geometric Modeling of the Human Torso Using Cubic Hermite Elements
,”
Ann. Biomed. Eng.
,
25
, pp.
96
111
.
14.
Shim
,
V. B.
,
Pitto
,
R. P.
,
Streicher
,
R. M.
,
Hunter
,
P. J.
, and
Anderson
,
I. A.
, 2008, “
Development and Validation of Patient-Specific Finite Element Models of the Hemipelvis Generated From a Sparse CT Data Set
,”
ASME J. Biomech. Eng.
,
130
, p.
051010
.
15.
Gordon
,
J.
,
Kauzlarich
,
J. J.
, and
Thacker
,
J. G.
, 1989, “
Tests of Two New Polyurethane Foam Wheelchair Tires
,”
J. Rehabil. Res. Dev.
,
26
, pp.
33
46
.
16.
Eberle
,
S.
,
Gerber
,
C.
,
von Oldenburg
,
G.
,
Hungerer
,
S.
, and
Augat
,
P.
, 2009, “
Type of Hip Fracture Determines Load Share in Intramedullary Osteosynthesis
,”
Clin. Orthop. Relat. Res.
,
467
, pp.
1972
1980
.
17.
Stoffel
,
K.
,
Dieter
,
U.
,
Stachowiak
,
G.
,
Gachter
,
A.
, and
Kuster
,
M. S.
, 2003, “
Biomechanical Testing of the LCP—How Can Stability in Locked Internal Fixators Be Controlled?
,”
Injury
,
34
, Suppl
2
, p.
B11
9
.
18.
Mihalko
,
W. M.
,
Beaudoin
,
A. J.
,
Cardea
,
J. A.
, and
Krause
,
W. R.
, 1992, “
Finite-Element Modelling of Femoral Shaft Fracture Fixation Techniques Post Total Hip Arthroplasty
,”
J. Biomech.
,
25
, pp.
469
476
.
19.
Garcia
,
J. M.
,
Doblare
,
M.
,
Seral
,
B.
,
Seral
,
F.
,
Palanca
,
D.
, and
Gracia
,
L.
, 2000, “
Three-Dimensional Finite Element Analysis of Several Internal and External Pelvis Fixations
,”
ASME J. Biomech. Eng.
,
122
, pp.
516
522
.
20.
Rogge
,
R. D.
,
Adams
,
B. D.
, and
Goel
,
V. K.
, 2002, “
An Analysis of Bone Stresses and Fixation Stability Using a Finite Element Model of Simulated Distal Radius Fractures
,”
J. Hand Surg. Am.
,
27
, pp.
86
92
.
21.
Nabavi
,
A.
,
Yeoh
,
K. M.
,
Shidiac
,
L.
,
Appleyard
,
R.
,
Gillies
,
R. M.
, and
Turnbull
,
A.
, 2009, “
Effects of Positioning and Notching of Resurfaced Femurs on Femoral Neck Strength: A Biomechanical Test
,”
J. Orthop. Surg.
,
17
, pp.
47
50
.
22.
American Society for Testing and Materials A, ASTM F1839-08 Standard Specification for Rigid Polyurethane Foam for Use as a Standard Material for Testing Orthopedic Devices and Instruments, 2008.
You do not currently have access to this content.