While the individual tissues of the vertebral joint demonstrate viscoelastic properties, the global viscoelastic properties of the lumbar vertebral joint are not well established. This study investigated how changes in displacement rate influenced the mechanical response of the porcine cervical spine (a surrogate or model for the human lumbar spine) exposed to acute anterior shear failure loading. Thirty porcine cervical spine specimens (15 C3-C4 and 15 C5-C6) were placed under a 1600 N compressive load and subsequently loaded in anterior shear to failure at one of three randomly assigned displacement rates (1 mm/s, 4 mm/s, or 16 mm/s). Ultimate anterior shear force, ultimate displacement, average stiffness, and energy stored until failure were calculated. Load rate in the elastic region was also calculated to compare the load rates used in this study to those used in previous studies. Changes in displacement rate affected the C3-C4 and C5-C6 specimens differently. C5-C6 specimens tested at 16 mm/s had an ultimate force that was 28% and 23% higher than at 1 (p=0.0215) and 4 mm/s (p=0.0461), respectively. The average stiffness to failure of the C5-C6 specimens tested at 16 mm/s was 52% higher than at 4 mm/s (p=0.0289). No such differences were found for the C3-C4 specimens. An increase in the anterior shear displacement rate did not necessarily demonstrate viscoelasticity of the vertebral joint. Specimen intervertebral levels were affected differently by changes in anterior shear displacement rate, which may have been a result of anatomical and postural differences between the two levels. Future studies should further investigate the effect of displacement rate on the spine and the inconsistencies between different specimen levels.

1.
Hutton
,
W. C.
,
Cyron
,
B. M.
, and
Stott
,
J. R.
, 1979, “
The Compressive Strength of Lumbar Vertebrae
,”
J. Anat.
0021-8782,
129
(
4
), pp.
753
758
.
2.
Kemper
,
A. R.
,
McNally
,
C.
,
Manoogian
,
S. J.
, 2008, “
Tensile Material Properties of Human Tibia Cortical Bone Effects of Orientation and Loading Rate
,”
Biomed. Sci. Instrum.
0067-8856,
44
, pp.
419
427
.
3.
Bass
,
C. R.
,
Planchak
,
C. J.
, and
Salzar
,
R. S.
, 2007, “
The Temperature-Dependent Viscoelasticity of Porcine Lumbar Spine Ligaments
,”
Spine
0362-2436,
32
(
16
), pp.
E436
E442
.
4.
Yingling
,
V. R.
,
Callaghan
,
J. P.
, and
McGill
,
S. M.
, 1997, “
Dynamic Loading Affects the Mechanical Properties and Failure Site of Porcine Spines
,”
Clin. Biomech. (Bristol, Avon)
0268-0033,
12
(
5
), pp.
301
305
.
5.
Yingling
,
V. R.
, and
McGill
,
S. M.
, 1999, “
Anterior Shear of Spinal Motion Segments. Kinematics, Kinetics, and Resultant Injuries Observed in a Porcine Model
,”
Spine
0362-2436,
24
(
18
), pp.
1882
1889
.
6.
Drake
,
J. D. M.
, “
Axial Twist Loading of the Spine Modulators of Injury Mechanisms and the Potential for Pain Generation
,” Ph.D. thesis, University of Waterloo, 2008.
7.
Yingling
,
V. R.
,
Callaghan
,
J. P.
, and
McGill
,
S. M.
, 1999, “
The Porcine Cervical Spine as a Model of the Human Lumbar Spine: An Anatomical, Geometric, and Functional Comparison
,”
J. Spinal Disord.
0895-0385,
12
(
5
), pp.
415
423
.
8.
McLain
,
R. F.
,
Yerby
,
S. A.
, and
Moseley
,
T. A.
, 2002, “
Comparative Morphometry of L4 Vertebrae: Comparison of Large Animal Models for the Human Lumbar Spine
,”
Spine
0362-2436,
27
(
8
), pp.
E200
E206
.
9.
Smit
,
T. H.
, 2002, “
The Use of a Quadruped as an In Vivo Model for the Study of the Spine - Biomechanical Considerations
,”
Eur. Spine J.
0940-6719,
11
(
2
) pp.
137
144
.
10.
Dath
,
R.
,
Ebinesan
,
A. D.
, and
Porter
,
K. M.
, 2007, “
Anatomical Measurements of Porcine Lumbar Vertebrae
,”
Clin. Biomech. (Bristol, Avon)
0268-0033,
22
(
5
), pp.
607
613
.
11.
Norman
,
R.
,
Wells
,
R.
, and
Neumann
,
P.
, 1998, “
A Comparison of Peak vs Cumulative Physical Work Exposure Risk Factors for the Reporting of Low Back Pain in the Automotive Industry
,”
Clin. Biomech. (Bristol, Avon)
0268-0033,
13
(
8
), pp.
561
573
.
12.
Cripton
,
P.
,
Berleman
,
U.
, and
Visarius
,
H.
, 1995, “
Response of the Lumbar Spine Due to Shear Loading
,”
Symposium: Injury Prevention Through Biomechanics
, Anonymous, Detroit, pp.
111
126
.
13.
van Dieën
,
J. H.
,
van der Veen
,
A.
,
van Royen
,
B. J.
, and
Kingma
,
I.
, 2006, “
Fatigue Failure in Shear Loading of Porcine Lumbar Spine Segments
,”
Spine
0362-2436,
31
(
15
), pp.
E494
E498
.
14.
Fagan
,
M. J.
,
Julian
,
S.
, and
Mohsen
,
A. M.
, 2002, “
Finite Element Analysis in Spine Research
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
0954-4119,
216
(
5
), pp.
281
298
.
15.
Wang
,
J. L.
,
Parnianpour
,
M.
, and
Shirazi-Adl
,
A.
, 1997, “
Development and Validation of a Viscoelastic Finite Element Model of an L2/L3 Motion Segment
,”
Theor. Appl. Fract. Mech.
0167-8442,
28
(
1
), pp.
81
93
.
16.
Lu
,
Y. M.
,
Hutton
,
W. C.
, and
Gharpuray
,
V. M.
, 1996, “
Do Bending, Twisting, and Diurnal Fluid Changes in the Disc Affect the Propensity to Prolapse? A Viscoelastic Finite Element Model
,”
Spine
0362-2436,
21
(
22
), pp.
2570
2579
.
17.
Galante
,
J. O.
, 1967, “
Tensile Properties of the Human Lumbar Annulus Fibrosus
,”
Acta Orthop. Scand.
0001-6470,
100
, pp.
1
91
.
18.
Parkinson
,
R. J.
,
Durkin
,
J. L.
, and
Callaghan
,
J. P.
, 2005, “
Estimating the Compressive Strength of the Porcine Cervical Spine: An Examination of the Utility of DXA
,”
Spine
0362-2436,
30
(
17
), pp.
E492
8
.
19.
Callaghan
,
J. P.
, and
McGill
,
S. M.
, 1995, “
Frozen Storage Increases the Ultimate Compressive Load of Porcine Vertebrae
,”
J. Orthop. Res.
0736-0266,
13
(
5
), pp.
809
812
.
20.
Boden
,
S. D.
,
Riew
,
K. D.
, and
Yamaguchi
,
K.
, 1996, “
Orientation of the Lumbar Facet Joints: Association With Degenerative Disc Disease
,”
J. Bone Jt. Surg., Am. Vol.
0021-9355,
78
(
3
), pp.
403
411
.
21.
Grobler
,
L. J.
,
Robertson
,
P. A.
, and
Novotny
,
J. E.
, 1993, “
Etiology of Spondylolisthesis. Assessment of the Role Played by Lumbar Facet Joint Morphology
,”
Spine
0362-2436,
18
(
1
), pp.
80
91
.
22.
Callaghan
,
J. P.
, and
McGill
,
S. M.
, 2001, “
Intervertebral Disc Herniation: Studies on a Porcine Model Exposed to Highly Repetitive Flexion/Extension Motion With Compressive Force
,”
Clin. Biomech. (Bristol, Avon)
0268-0033,
16
(
1
), pp.
28
37
.
23.
Panjabi
,
M. M.
, 1992, “
The Stabilizing System of the Spine. Part II. Neutral Zone and Instability Hypothesis
,”
J. Spinal Disord.
0895-0385,
5
(
4
), pp.
390
397
.
24.
Howarth
,
S. J.
,
Gallagher
,
K. M.
, and
Callaghan
,
J. P.
, 2009, “
Postural Influence on Short-Range Passive Properties of the Porcine Cervical Spine Under Anterior/Posterior Shear Load
,”
Eur. Spine J.
0940-6719, submitted.
25.
Stokes
,
I. A.
,
Gardner-Morse
,
M.
, and
Churchill
,
D.
, 2002, “
Measurement of a Spinal Motion Segment Stiffness Matrix
,”
J. Biomech.
0021-9290,
35
(
4
), pp.
517
521
.
26.
Lu
,
W. W.
,
Luk
,
K. D.
, and
Holmes
,
A. D.
, 2005, “
Pure Shear Properties of Lumbar Spinal Joints and the Effect of Tissue Sectioning on Load Sharing
,”
Spine
0362-2436,
30
(
8
), pp.
E204
E209
.
27.
Cyron
,
B. M.
,
Hutton
,
W. C.
, and
Troup
,
J. D.
, 1976, “
Spondylolytic Fractures
,”
J. Bone Jt. Surg., Br. Vol.
0301-620X,
58-B
(
4
), pp.
462
466
.
28.
Panjabi
,
M. M.
,
Goel
,
V.
, and
Oxland
,
T.
, 1992, “
Human Lumbar Vertebrae. Quantitative Three-Dimensional Anatomy
,”
Spine
0362-2436,
17
(
3
), pp.
299
306
.
29.
Panjabi
,
M. M.
,
Oxland
,
T.
, and
Takata
,
K.
, 1993, “
Articular Facets of the Human Spine. Quantitative Three-Dimensional Anatomy
,”
Spine
0362-2436,
18
(
10
), pp.
1298
1310
.
30.
Vedantam
,
R.
,
Lenke
,
L. G.
, and
Keeney
,
J. A.
, 1998, “
Comparison of Standing Sagittal Spinal Alignment in Asymptomatic Adolescents and Adults
,”
Spine
0362-2436,
23
(
2
), pp.
211
215
.
31.
Adams
,
M. A.
, and
Hutton
,
W. C.
, 1980, “
The Effect of Posture on the Role of the Apophysial Joints in Resisting Intervertebral Compressive Forces
,”
J. Bone Jt. Surg., Br. Vol.
0301-620X,
62
(
3
), pp.
358
362
.
32.
Dunlop
,
R. B.
,
Adams
,
M. A.
, and
Hutton
,
W. C.
, 1984, “
Disc Space Narrowing and the Lumbar Facet Joints
,”
J. Bone Jt. Surg., Br. Vol.
0301-620X,
66
(
5
), pp.
706
710
.
33.
Alini
,
M.
,
Eisenstein
,
S. M.
, and
Ito
,
K.
, 2008, “
Are Animal Models Useful for Studying Human Disc Disorders/Degeneration?
,”
Eur. Spine J.
0940-6719,
17
(
1
) pp.
2
19
.
34.
Oxland
,
T. R.
,
Panjabi
,
M. M.
, and
Southern
,
E. P.
, 1991, “
An Anatomic Basis for Spinal Instability: A Porcine Trauma Model
,”
J. Orthop. Res.
0736-0266,
9
(
3
), pp.
452
462
.
You do not currently have access to this content.