Abstract

A finite-element numerical model was constructed of the spinal cord, pia mater, filum terminale, cerebrospinal fluid in the spinal subarachnoid space (SSS), and dura mater. The cord was hollowed out by a thoracic syrinx of length 140 mm, and the SSS included a stenosis of length 30 mm opposite this syrinx. The stenosis severity was varied from 0% to 90% by area. Pressure pulse excitation was applied to the model either at the cranial end of the SSS, simulating the effect of cranial arterial pulsation, or externally to the abdominal dura mater, simulating the effect of cough. A very short pulse was used to examine wave propagation; a pulse emulating cardiac systole was used to examine the effects of fluid displacement. Additionally, repetitive sinusoidal excitation was applied cranially. Bulk fluid flow past the stenosis gave rise to prominent longitudinal pressure dissociation (“suck”) in the SSS adjacent to the syrinx. However, this did not proportionally increase the longitudinal motion of fluid in the syrinx. The inertia of the fluid in the SSS, together with the compliance of this space, gave a resonance capable of being excited constructively or destructively by cardiac or coughing impulses. The main effect of mild stenosis was to lower the frequency of this resonance; severe stenosis damped out to-and-fro motions after the end of the applied excitation. Syrinx fluid motion indicated the fluid momentum and thus the pressure developed when the fluid was stopped by the end of the syrinx; however, the tearing stress in the local cord material depended also on the instantaneous local SSS pressure and was therefore not well predicted by syrinx fluid motion. Stenosis was also shown to give rise to a one-way valve effect causing raised SSS pressure caudally and slight average cord displacement cranially. The investigation showed that previous qualitative predictions of the effects of suck neglected factors that reduced the extent of the resulting syrinx fluid motion and of the cord tearing stress, which ultimately determines whether the syrinx lengthens.

References

1.
Brodbelt
,
A. R.
, and
Stoodley
,
M. A.
, 2003, “
Post-Traumatic Syringomyelia: A Review
,”
J. Clin. Neurosci.
, 0967-5868,
10
(
4
), pp.
401
408
.
2.
Levine
,
D. N.
, 2004, “
The Pathogenesis of Syringomyelia Associated With Lesions at the Foramen Magnum: A Critical Review of Existing Theories and Proposal of a New Hypothesis
,”
J. Neurol. Sci.
0022-510X,
220
, pp.
3
21
.
3.
Williams
,
B.
, 1980, “
On the Pathogenesis of Syringomyelia: A Review
,”
J. R. Soc. Med.
0141-0768,
73
, pp.
798
806
.
4.
Brodbelt
,
A.
, and
Stoodley
,
M.
, 2007, “
CSF Pathways: A Review
,”
Br. J. Neurosurg.
0268-8697,
21
(
5
), pp.
510
520
.
5.
Henry-Feugeas
,
M. -C.
,
Idy-Peretti
,
I.
,
Baledent
,
O.
,
Poncelet-Didon
,
A.
,
Zannoli
,
G.
,
Bittoun
,
J.
, and
Schouman-Claeys
,
E.
, 2000, “
Origin of Subarachnoid Cerebrospinal Fluid Pulsations: A Phase-Contrast MR Analysis
,”
Magn. Reson. Imaging
0730-725X,
18
(
4
), pp.
387
395
.
6.
Marmarou
,
A.
,
Shulman
,
K.
, and
LaMorgese
,
J.
, 1975, “
Compartmental Analysis of Compliance and Outflow Resistance of the Cerebrospinal Fluid System
,”
J. Neurosurg.
0022-3085,
43
, pp.
523
534
.
7.
Kalata
,
W.
,
Martin
,
B. A.
,
Oshinski
,
J. N.
,
Jerosch-Herold
,
M.
,
Royston
,
T. J.
, and
Loth
,
F.
, 2009, “
MR Measurement of Cerebrospinal Fluid Velocity Wave Speed in the Spinal Canal
,”
IEEE Trans. Biomed. Eng.
0018-9294,
56
(
6
), pp.
1765
1768
.
8.
Williams
,
B.
, 1986, “
Progress in Syringomyelia
,”
Neurol. Res.
0161-6412,
8
, pp.
130
145
.
9.
Martin
,
B. A.
,
Kalata
,
W.
,
Loth
,
F.
,
Royston
,
T. J.
, and
Oshinski
,
J. N.
, 2005, “
Syringomyelia Hydrodynamics: An In Vitro Study Based on In Vivo Measurements
,”
ASME J. Biomech. Eng.
0148-0731,
127
, pp.
1110
1120
.
10.
Bertram
,
C. D.
, 2009, “
A Numerical Investigation of Waves Propagating in the Spinal Cord and Subarachnoid Space in the Presence of a Syrinx
,”
J. Fluids Struct.
0889-9746,
25
(
7
), pp.
1189
1205
.
11.
Mazuchowski
,
E. L.
, and
Thibault
,
L. E.
, 2003, “
Biomechanical Properties of the Human Spinal Cord and Pia Mater
,”
ASME Summer Bioengineering Conference
, Key Biscayne, FL, pp.
1205
1206
.
12.
Ozawa
,
H.
,
Matsumoto
,
T.
,
Ohashi
,
T.
,
Sato
,
M.
, and
Kokubun
,
S.
, 2004, “
Mechanical Properties and Function of the Spinal Pia Mater
,”
J. Neurosurg. Spine
,
1
, pp.
122
127
.
13.
Bertram
,
C. D.
,
Bilston
,
L. E.
, and
Stoodley
,
M. A.
, 2008, “
Tensile Radial Stress in the Spinal Cord Related to Arachnoiditis or Tethering: A Numerical Model
,”
Med. Biol. Eng. Comput.
0140-0118,
46
(
7
), pp.
701
707
.
14.
Crossman
,
A. R.
, and
Neary
,
D.
, 2005,
Neuroanatomy: An Illustrated Colour Text
,
Elsevier
,
Churchill Livingstone, Edinburgh
.
15.
Reina
,
M. A.
,
Casasola
,
O. D.
,
Villanueva
,
M. C.
,
Lopez
,
A.
,
Maches
,
F.
, and
De Andres
,
J. A.
, 2004, “
Ultrastructural Findings in Human Spinal Pia Mater in Relation to Subarachnoid Anesthesia
,”
Anesth. Analg.
,
98
(
5
), pp.
1479
1485
.
16.
Tani
,
S.
,
Yamada
,
S.
, and
Knighton
,
R. S.
, 1987, “
Extensibility of the Lumbar and Sacral Cord. Pathophysiology of the Tethered Spinal Cord in Cats
,”
J. Neurosurg.
0022-3085,
66
(
1
), pp.
116
123
.
17.
Heiss
,
J. D.
,
Patronas
,
N.
,
DeVroom
,
H. L.
,
Shawker
,
T.
,
Ennis
,
R.
,
Kammerer
,
W.
,
Eidsath
,
A.
,
Talbot
,
T.
,
Morris
,
J.
,
Eskioglu
,
E.
, and
Oldfield
,
E. H.
, 1999, “
Elucidating the Pathophysiology of Syringomyelia
,”
J. Neurosurg.
0022-3085,
91
, pp.
553
562
.
18.
Sansur
,
C. A.
,
Heiss
,
J. D.
,
DeVroom
,
H. L.
,
Eskioglu
,
E.
,
Ennis
,
R.
, and
Oldfield
,
E. H.
, 2003, “
Pathophysiology of Headache Associated With Cough in Patients With Chiari I Malformation
,”
J. Neurosurg.
0022-3085,
98
(
3
), pp.
453
458
.
19.
Williams
,
B.
, 1976, “
Cerebrospinal Fluid Pressure Changes in Response to Coughing
,”
Brain
0006-8950,
99
, pp.
331
346
.
20.
Williams
,
B.
, 1981a, “
Simultaneous Cerebral and Spinal Fluid Pressure Recordings. 1. Technique, Physiology, and Normal Results
,”
Acta Neurochir. (Wien)
,
58
(
3–4
), pp.
167
185
.
21.
Jackson
,
J. R.
, and
Williams
,
B.
, 1979, “
Errors in Velocity Measurement by the Pitot Principle in Fluids With Slowly Propagated Pressure Waves
,”
J. Biomed. Eng.
0141-5425,
1
, pp.
50
54
.
22.
Carpenter
,
P. W.
,
Berkouk
,
K.
, and
Lucey
,
A. D.
, 1999, “
A Theoretical Model of Pressure Wave Propagation in the Human Spinal CSF System
,”
Engineering Mechanics
1802-1484,
6
(
4/5
), pp.
213
228
.
23.
Greitz
,
D.
,
Franck
,
A.
, and
Nordell
,
B.
, 1993, “
On the Pulsatile Nature of Intracranial and Spinal CSF-Circulation Demonstrated by MR Imaging
,”
Acta Radiol.
0284-1851,
34
(
4
), pp.
321
328
.
24.
Greitz
,
D.
,
Ericson
,
K.
, and
Flodmark
,
O.
, 1999, “
Pathogenesis and Mechanics of Spinal Cord Cysts—A New Hypothesis Based on Magnetic Resonance Studies of Cerebrospinal Fluid Dynamics
,”
International Journal of Neuroradiology
1079-8110,
5
(
2
), pp.
61
78
.
25.
Carpenter
,
P. W.
,
Berkouk
,
K.
, and
Lucey
,
A. D.
, 2003, “
Pressure Wave Propagation in Fluid-Filled Co-Axial Elastic Tubes, Part 2: Mechanisms for the Pathogenesis of Syringomyelia
,”
ASME J. Biomech. Eng.
0148-0731,
125
, pp.
857
863
.
26.
Bathe
,
K. -J.
, 1996,
Finite Element Procedures
,
Prentice-Hall
,
Upper Saddle River, NJ
.
27.
Bertram
,
C. D.
,
Brodbelt
,
A. R.
, and
Stoodley
,
M. A.
, 2005, “
The Origins of Syringomyelia: Numerical Models of Fluid/Structure Interactions in the Spinal Cord
,”
ASME J. Biomech. Eng.
0148-0731,
127
(
7
), pp.
1099
1109
.
28.
Martin
,
B. A.
,
Labuda
,
R.
,
Royston
,
T. J.
,
Oshinski
,
J. N.
,
Iskandar
,
B.
, and
Loth
,
F.
, “Spinal Canal Pressure Measurements in an In Vitro Spinal Stenosis Model: Implications on Syringomyelia Theories,” ASME J. Biomech. Eng. (to be published).
29.
Brugières
,
P.
,
Idy-Peretti
,
I.
,
Iffenecker
,
C.
,
Parker
,
F.
,
Jolivet
,
O.
,
Hurth
,
M.
,
Gaston
,
A.
, and
Bittoun
,
J.
, 2000, “
CSF Flow Measurement in Syringomyelia
,”
AJNR Am. J. Neuroradiol.
0195-6108,
21
(
10
), pp.
1785
1792
.
30.
Patin
,
D. J.
,
Eckstein
,
E. C.
,
Harum
,
K.
, and
Pallares
,
V. S.
, 1993, “
Anatomic and Biomechanical Properties of Human Lumbar Dura Mater
,”
Anesth. Analg.
,
76
(
3
), pp.
535
540
.
31.
Runza
,
M.
,
Pietrabissa
,
R.
,
Mantero
,
S.
,
Albani
,
A.
,
Quaglini
,
V.
, and
Contro
,
R.
, 1999, “
Lumbar Dura Mater Biomechanics: Experimental Characterization and Scanning Electron Microscopy Observations
,”
Anesth. Analg.
,
88
, pp.
1317
1321
.
32.
Bilston
,
L. E.
, and
Thibault
,
L. E.
, 1995, “
The Mechanical Properties of the Human Cervical Spinal Cord In Vitro
,”
Ann. Biomed. Eng.
0090-6964,
24
, pp.
67
74
.
33.
Urayama
,
K.
, 1994, “
Origin of Lumbar Cerebrospinal Fluid Pulse Wave
,”
Spine
0362-2436,
19
(
4
), pp.
441
445
.
You do not currently have access to this content.