The pericellular matrix (PCM) is the narrow tissue region surrounding all chondrocytes in articular cartilage and, together, the chondrocyte(s) and surrounding PCM have been termed the chondron. Previous theoretical and experimental studies suggest that the structure and properties of the PCM significantly influence the biomechanical environment at the microscopic scale of the chondrocytes within cartilage. In the present study, an axisymmetric boundary element method (BEM) was developed for linear elastic domains with internal interfaces. The new BEM was employed in a multiscale continuum model to determine linear elastic properties of the PCM in situ, via inverse analysis of previously reported experimental data for the three-dimensional morphological changes of chondrons within a cartilage explant in equilibrium unconfined compression (Choi, et al., 2007, “Zonal Changes in the Three-Dimensional Morphology of the Chondron Under Compression: The Relationship Among Cellular, Pericellular, and Extracellular Deformation in Articular Cartilage,” J. Biomech., 40, pp. 2596–2603). The microscale geometry of the chondron (cell and PCM) within the cartilage extracellular matrix (ECM) was represented as a three-zone equilibrated biphasic region comprised of an ellipsoidal chondrocyte with encapsulating PCM that was embedded within a spherical ECM subjected to boundary conditions for unconfined compression at its outer boundary. Accuracy of the three-zone BEM model was evaluated and compared with analytical finite element solutions. The model was then integrated with a nonlinear optimization technique (Nelder–Mead) to determine PCM elastic properties within the cartilage explant by solving an inverse problem associated with the in situ experimental data for chondron deformation. Depending on the assumed material properties of the ECM and the choice of cost function in the optimization, estimates of the PCM Young's modulus ranged from 24kPa to 59 kPa, consistent with previous measurements of PCM properties on extracted chondrons using micropipette aspiration. Taken together with previous experimental and theoretical studies of cell-matrix interactions in cartilage, these findings suggest an important role for the PCM in modulating the mechanical environment of the chondrocyte.

1.
Mow
,
V. C.
,
Ratcliffe
,
A.
, and
Poole
,
A. R.
, 1992, “
Cartilage and Diarthrodial Joints as Paradigms for Hierarchical Materials and Structures
,”
Biomaterials
0142-9612,
13
, pp.
67
97
.
2.
Urban
,
J. P.
,
Maroudas
,
A.
,
Bayliss
,
M. T.
, and
Dillon
,
J.
, 1979, “
Swelling Pressures of Proteoglycans at the Concentrations Found in Cartilaginous Tissues
,”
Biorheology
0006-355X,
16
, pp.
447
464
.
3.
Stockwell
,
R. A.
, 1979,
Biology of Cartilage Cells
,
Cambridge University Press
,
Cambridge, UK
.
4.
Hunziker
,
E. B.
,
Michel
,
M.
, and
Studer
,
D.
, 1997, “
Ultrastructure of Adult Human Articular Cartilage Matrix After Cryotechnical Processing
,”
Microsc. Res. Tech.
1059-910X,
37
, pp.
271
284
.
5.
Poole
,
C. A.
,
Flint
,
M. H.
, and
Beaumont
,
B. W.
, 1987, “
Chondrons in Cartilage: Ultrastructural Analysis of the Pericellular Microenvironment in Adult Human Articular Cartilages
,”
J. Orthop. Res.
0736-0266,
5
, pp.
509
522
.
6.
Benninghoff
,
A.
, 1925, “
Form und Bau der Gelenkknorpel in ihren Beziehungen zur Funktion Erste Mitteilung: Die Modellierenden und Formerhaltenden Faktoren des Knorpelreliefs
,”
Anat. Embryol.
0340-2061,
76
(
1-3
), pp.
43
63
.
7.
Poole
,
C. A.
,
Ayad
,
S.
, and
Gilbert
,
R. T.
, 1992, “
Chondrons From Articular Cartilage. V. Immunohistochemical Evaluation of Type VI Collagen Organisation in Isolated Chondrons by Light, Confocal and Electron Microscopy
,”
J. Cell. Sci.
0021-9533,
103
, pp.
1101
1110
.
8.
Poole
,
C. A.
,
Ayad
,
S.
, and
Schofield
,
J. R.
, 1988, “
Chondrons From Articular Cartilage: I. Immunolocalization of Type VI Collagen in the Pericellular Capsule of Isolated Canine Tibial Chondrons
,”
J. Cell. Sci.
0021-9533,
90
, pp.
635
643
.
9.
Alexopoulos
,
L. G.
,
Youn
,
I.
,
Bonaldo
,
P.
, and
Guilak
,
F.
, 2009, “
Developmental and Osteoarthritic Changes in Col6a1 Knockout Mice: The Biomechanics of Collagen VI in the Cartilage Pericellular Matrix
,”
Arthritis Rheum.
0004-3591,
60
, pp.
771
779
.
10.
Lee
,
G. M.
,
Paul
,
T. A.
,
Slabaugh
,
M.
, and
Kelley
,
S. S.
, 2000, “
The Incidence of Enlarged Chondrons in Normal and Osteoarthritic Human Cartilage and Their Relative Matrix Density
,”
Osteoarthritis Cartilage
1063-4584,
8
, pp.
44
52
.
11.
Szirmai
,
J. A.
, 1974, “
The Concept of the Chondron as a Biomechanical Unit, 87
,”
Biopolymer und Biomechanik von Bindegewebssystemen
,
F.
Hartmann
, ed.,
Academic
,
Berlin
.
12.
Guilak
,
F.
,
Alexopoulos
,
L. G.
,
Upton
,
M. L.
,
Youn
,
I.
,
Choi
,
J. B.
,
Cao
,
L.
,
Setton
,
L. A.
, and
Haider
,
M. A.
, 2006, “
The Pericellular Matrix as a Transducer of Biomechanical and Biochemical Signals in Articular Cartilage
,”
Ann. N.Y. Acad. Sci.
0077-8923,
1068
, pp.
498
512
.
13.
Alexopoulos
,
L. G.
,
Setton
,
L. A.
, and
Guilak
,
F.
, 2005a, “
The Biomechanical Role of the Chondrocyte Pericellular Matrix in Articular Cartilage
,”
Acta Biomater.
1742-7061,
1
, pp.
317
325
.
14.
Guilak
,
F.
, and
Mow
,
V. C.
, 2000, “
The Mechanical Environment of the Chondrocyte: A Biphasic Finite Element Model of Cell-Matrix Interactions in Articular Cartilage
,”
J. Biomech.
0021-9290,
33
, pp.
1663
1673
.
15.
Haider
,
M. A.
, 2004, “
A Radial Biphasic Model for Local Cell-Matrix Mechanics in Articular Cartilage
,”
SIAM J. Appl. Math.
0036-1399,
64
, pp.
1588
1608
.
16.
Kim
,
E.
,
Guilak
,
F.
, and
Haider
,
M. A.
, 2008, “
The Dynamic Mechanical Environment of the Chondrocyte: A Biphasic Finite Element Model of Cell-Matrix Interactions Under Cyclic Compressive Loading
,”
ASME J. Biomech. Eng.
0148-0731,
130
, p.
061009
.
17.
Ateshian
,
G. A.
,
Warden
,
W. H.
,
Kim
,
J. J.
,
Grelsamer
,
R. P.
, and
Mow
,
V. C.
, 1997, “
Finite Deformation Biphasic Material Properties of Bovine Articular Cartilage From Confined Compression Experiments
,”
J. Biomech.
0021-9290,
30
, pp.
1157
1164
.
18.
Athanasiou
,
K. A.
,
Rosenwasser
,
M. P.
,
Buckwalter
,
J. A.
,
Malinin
,
T. I.
, and
Mow
,
V. C.
, 1991, “
Interspecies Comparisons of In Situ Intrinsic Mechanical Properties of Distal Femoral Cartilage
,”
J. Orthop. Res.
0736-0266,
9
, pp.
330
340
.
19.
Mow
,
V. C.
,
Kuei
,
S. C.
,
Lai
,
W. M.
, and
Armstrong
,
C. G.
, 1980, “
Biphasic Creep and Stress Relaxation of Articular Cartilage in Compression: Theory and Experiments
,”
ASME J. Biomech. Eng.
0148-0731,
102
, pp.
73
84
.
20.
Trickey
,
W. R.
,
Lee
,
G. M.
, and
Guilak
,
F.
, 2000, “
Viscoelastic Properties of Chondrocytes From Normal and Osteoarthritic Human Cartilage
,”
J. Orthop. Res.
0736-0266,
18
, pp.
891
898
.
21.
Darling
,
E. M.
,
Topel
,
M.
,
Zauscher
,
S.
,
Vail
,
T. P.
, and
Guilak
,
F.
, 2008, “
Viscoelastic Properties of Human Mesenchymally-Derived Stem Cells and Primary Osteoblasts, Chondrocytes, and Adipocytes
,”
J. Biomech.
0021-9290,
41
, pp.
454
464
.
22.
Darling
,
E. M.
,
Zauscher
,
S.
, and
Guilak
,
F.
, 2006, “
Viscoelastic Properties of Zonal Articular Chondrocytes Measured by Atomic Force Microscopy
,”
Osteoarthritis Cartilage
1063-4584,
14
, pp.
571
579
.
23.
Koay
,
E. J.
,
Shieh
,
A. C.
, and
Athanasiou
,
K. A.
, 2003, “
Creep Indentation of Single Cells
,”
ASME J. Biomech. Eng.
0148-0731,
125
, pp.
334
341
.
24.
Shieh
,
A. C.
, and
Athanasiou
,
K. A.
, 2006, “
Biomechanics of Single Zonal Chondrocytes
,”
J. Biomech.
0021-9290,
39
, pp.
1595
1602
.
25.
Alexopoulos
,
L. G.
,
Haider
,
M. A.
,
Vail
,
T. P.
, and
Guilak
,
F.
, 2003, “
Alterations in the Mechanical Properties of the Human Chondrocyte Pericellular Matrix With Osteoarthritis
,”
ASME J. Biomech. Eng.
0148-0731,
125
, pp.
323
333
.
26.
Guilak
,
F.
,
Alexopoulos
,
L. G.
,
Haider
,
M. A.
,
Ting-Beall
,
H. P.
, and
Setton
,
L. A.
, 2005, “
Zonal Uniformity in Mechanical Properties of the Chondrocyte Pericellular Matrix: Micropipette Aspiration of Canine Chondrons Isolated by Cartilage Homogenization
,”
Ann. Biomed. Eng.
0090-6964,
33
, pp.
1312
1318
.
27.
Alexopoulos
,
L. G.
,
Williams
,
G. M.
,
Upton
,
M. L.
,
Setton
,
L. A.
, and
Guilak
,
F.
, 2005, “
Osteoarthritic Changes in the Biphasic Mechanical Properties of the chondrocyte Pericellular Matrix in Articular Cartilage
,”
J. Biomech.
0021-9290,
38
, pp.
509
517
.
28.
Michalek
,
A. J.
, and
Iatridis
,
J. C.
, 2007, “
A Numerical Study to Determine Pericellular Matrix Modulus and Evaluate Its Effects on the Micromechanical Environment of Chondrocytes
,”
J. Biomech.
0021-9290,
40
, pp.
1405
1409
.
29.
Guilak
,
F.
,
Jones
,
W. R.
,
Ting-Beall
,
H. P.
, and
Lee
,
G. M.
, 1999, “
The Deformation Behavior and Mechanical Properties of Chondrocytes in Articular Cartilage
,”
Osteoarthritis Cartilage
1063-4584,
7
, pp.
59
70
.
30.
Hing
,
W. A.
,
Sherwin
,
A. F.
, and
Poole
,
C. A.
, 2002, “
The Influence of the Pericellular Microenvironment on the Chondrocyte Response to Osmotic Challenge
,”
Osteoarthritis Cartilage
1063-4584,
10
, pp.
297
307
.
31.
Guilak
,
F.
,
Ratcliffe
,
A.
, and
Mow
,
V. C.
, 1995, “
Chondrocyte Deformation and Local Tissue Strain in Articular Cartilage: A Confocal Microscopy Study
,”
J. Orthop. Res.
0736-0266,
13
, pp.
410
421
.
32.
Buschmann
,
M. D.
,
Gluzband
,
Y. A.
,
Grodzinsky
,
A. J.
, and
Hunziker
,
E. B.
, 1995, “
Mechanical Compression Modulates Matrix Biosynthesis in Chondrocyte/Agarose Culture
,”
J. Cell Sci.
,
108
, pp.
1497
1508
.
33.
Quinn
,
T. M.
,
Grodzinsky
,
A. J.
,
Buschmann
,
M. D.
,
Kim
,
Y. J.
, and
Hunziker
,
E. B.
, 1998, “
Mechanical Compression Alters Proteoglycan Deposition and Matrix Deformation Around Individual Cells in Cartilage Explants
,”
J. Cell. Sci.
0021-9533,
111
, pp.
573
583
.
34.
Freeman
,
P. M.
,
Natarajan
,
R. N.
,
Kimura
,
J. H.
, and
Andriacchi
,
T. P.
, 1994, “
Chondrocyte Cells Respond Mechanically to Compressive Loads
,”
J. Orthop. Res.
0736-0266,
12
, pp.
311
320
.
35.
Knight
,
M. M.
,
Ross
,
J. M.
,
Sherwin
,
A. F.
,
Lee
,
D. A.
,
Bader
,
D. L.
, and
Poole
,
C. A.
, 2001, “
Chondrocyte Deformation Within Mechanically and Enzymatically Extracted Chondrons Compressed in Agarose
,”
Biochim. Biophys. Acta
0006-3002,
1526
, pp.
141
146
.
36.
Choi
,
J. B.
,
Youn
,
I.
,
Cao
,
L.
,
Leddy
,
H. A.
,
Gilchrist
,
C. L.
,
Setton
,
L. A.
, and
Guilak
,
F.
, 2007, “
Zonal Changes in the Three-Dimensional Morphology of the Chondron Under Compression: The Relationship Among Cellular, Pericellular, and Extracellular Deformation in Articular Cartilage
,”
J. Biomech.
0021-9290,
40
, pp.
2596
2603
.
37.
Haider
,
M. A.
, and
Guilak
,
F.
, 2002, “
An Axisymmetric Boundary Integral Model for Assessing Elastic Cell Properties in the Micropipette Aspiration Contact Problem
,”
ASME J. Biomech. Eng.
0148-0731,
124
, pp.
586
595
.
38.
Benedict
,
B. A.
, 2008, “
Axisymmetric Poroelastic Boundary Element Methods for Biphasic Mechanics of Articular Cartilage
,” Ph.D. thesis, Department of Mathematics, North Carolina State University, Raleigh, NC.
39.
Guilak
,
F.
, 2000, “
The Deformation Behavior and Viscoelastic Properties of Chondrocytes in Articular Cartilage
,”
Biorheology
0006-355X,
37
, pp.
27
44
.
40.
Haider
,
M. A.
, and
Guilak
,
F.
, 2007, “
Application of a Three-Dimensional Poroelastic BEM to Modeling the Biphasic Mechanics of Cell-Matrix Interactions in Articular Cartilage
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
196
, pp.
2999
3010
.
41.
Korhonen
,
R. K.
, and
Herzog
,
W.
, 2008, “
Depth-Dependent Analysis of the Role of Collagen Fibrils, Fixed Charges and Fluid in the Pericellular Matrix of Articular Cartilage on Chondrocyte Mechanics
,”
J. Biomech.
0021-9290,
41
, pp.
480
485
.
42.
Wu
,
J. Z.
, and
Herzog
,
W.
, 2006, “
Analysis of the Mechanical Behavior of Chondrocytes in Unconfined Compression Tests for Cyclic Loading
,”
J. Biomech.
0021-9290,
39
, pp.
603
616
.
43.
Armstrong
,
C. G.
,
Lai
,
W. M.
, and
Mow
,
V. C.
, 1984, “
An Analysis of the Unconfined Compression of Articular Cartilage
,”
ASME J. Biomech. Eng.
0148-0731,
106
, pp.
165
173
.
44.
Bakr
,
A. A.
, 1986,
The Boundary Integral Equation Method in Axisymmetric Stress Analysis Problems
,
Springer-Verlag
,
Berlin
.
45.
Stroud
,
A. H.
, and
Secrest
,
D.
, 1966,
Gaussian Quadrature Formulas
,
Prentice-Hall
,
Englewood Cliffs, NJ.
46.
Haider
,
M. A.
, and
Guilak
,
F.
, 2000, “
An Axisymmetric Boundary Integral Model for Incompressible Linear Elasticity: Application to the Micropipette Aspiration Problem
,”
ASME J. Biomech. Eng.
0148-0731,
122
, pp.
236
244
.
47.
Guiggiani
,
M.
, and
Casalini
,
P.
, 1987, “
Direct Computation of Cauchy Principal Value Integrals in Advanced Boundary Elements
,”
Int. J. Numer. Methods Eng.
0029-5981,
24
, pp.
1711
1720
.
48.
Nelder
,
J.
, and
Mead
,
R.
, 1965, “
A Simplex Method for Function Minimization
,”
Comput. J.
0010-4620,
7
, pp.
308
313
.
49.
Kelley
,
C. T.
, 1999,
Iterative Methods for Optimization
,
SIAM
,
Philadelphia
.
50.
Allen
,
D. M.
, and
Mao
,
J. J.
, 2004, “
Heterogeneous Nanostructural and Nanoelastic Properties of Pericellular and Interterritorial Matrices of Chondrocytes by Atomic Force Microscopy
,”
J. Struct. Biol.
1047-8477,
145
, pp.
196
204
.
This content is only available via PDF.
You do not currently have access to this content.