Orthopaedic research on in vitro forces applied to bones, tendons, and ligaments during joint loading has been difficult to perform because of limitations with existing robotic simulators in applying full-physiological loading to the joint under investigation in real time. The objectives of the current work are as follows: (1) describe the design of a musculoskeletal simulator developed to support in vitro testing of cadaveric joint systems, (2) provide component and system-level validation results, and (3) demonstrate the simulator’s usefulness for specific applications of the foot-ankle complex and knee. The musculoskeletal simulator allows researchers to simulate a variety of loading conditions on cadaver joints via motorized actuators that simulate muscle forces while simultaneously contacting the joint with an external load applied by a specialized robot. Multiple foot and knee studies have been completed at the Cleveland Clinic to demonstrate the simulator’s capabilities. Using a variety of general-use components, experiments can be designed to test other musculoskeletal joints as well (e.g., hip, shoulder, facet joints of the spine). The accuracy of the tendon actuators to generate a target force profile during simulated walking was found to be highly variable and dependent on stance position. Repeatability (the ability of the system to generate the same tendon forces when the same experimental conditions are repeated) results showed that repeat forces were within the measurement accuracy of the system. It was determined that synchronization system accuracy was 6.7±2.0ms and was based on timing measurements from the robot and tendon actuators. The positioning error of the robot ranged from 10μm to 359μm, depending on measurement condition (e.g., loaded or unloaded, quasistatic or dynamic motion, centralized movements or extremes of travel, maximum value, or root-mean-square, and x-, y- or z-axis motion). Algorithms and methods for controlling specimen interactions with the robot (with and without muscle forces) to duplicate physiological loading of the joints through iterative pseudo-fuzzy logic and real-time hybrid control are described. Results from the tests of the musculoskeletal simulator have demonstrated that the speed and accuracy of the components, the synchronization timing, the force and position control methods, and the system software can adequately replicate the biomechanics of human motion required to conduct meaningful cadaveric joint investigations.

1.
Lanyon
,
L. E.
,
Hampson
,
W. G.
,
Goodship
,
A. E.
, and
Shah
,
J. S.
, 1975, “
Bone Deformation Recorded In Vivo From Strain Gauges Attached to the Human Tibial Shaft
,”
Acta Orthop. Scand.
0001-6470,
46
, pp.
256
268
.
2.
Burr
,
D. B.
,
Milgrom
,
C.
,
Fyhrie
,
D.
,
Forwood
,
M.
,
Nyska
,
M.
,
Finestone
,
A.
,
Hoshaw
,
S.
,
Saiag
,
E.
, and
Simkin
,
A.
, 1996, “
In Vivo Measurement of Human Tibial Strains during Vigorous Activity
,”
Bone (N.Y.)
8756-3282,
18
, pp.
405
410
.
3.
Weiss
,
J. A.
,
Gardiner
,
J. C.
,
Ellis
,
B. J.
,
Lujan
,
T. J.
, and
Phatak
,
N. S.
, 2005, “
Three-Dimensional Finite Element Modeling of Ligaments: Technical Aspects
,”
Med. Eng. Phys.
1350-4533,
27
, pp.
845
861
.
4.
Sharkey
,
N. A.
, and
Hamel
,
A. J.
, 1998, “
A Dynamic Cadaver Model of the Stance Phase of Gait: Performance Characteristics and Kinetic Validation
,”
Clin. Biomech. (Bristol, Avon)
0268-0033,
13
, pp.
420
433
.
5.
Milgrom
,
C.
,
Finestone
,
A.
,
Hamel
,
A.
,
Mandes
,
V.
,
Burr
,
D.
, and
Sharkey
,
N.
, 2004, “
A Comparison of Bone Strain Measurements at Anatomically Relevant Sites Using Surface Gauges Versus Strain Gauged Bone Staples
,”
J. Biomech.
0021-9290,
37
, pp.
947
952
.
6.
Hurschler
,
C.
,
Emmerich
,
J.
, and
Wülker
,
N.
, 2003, “
In Vitro Simulation of Stance Phase Gait—Part I: Model Verification
,”
Foot Ankle Int.
1071-1007,
24
, pp.
614
622
.
7.
Kim
,
K. -J.
,
Kitaoka
,
H. B.
,
Luo
,
Z. -P.
,
Ozeki
,
S.
,
Berglund
,
L. J.
,
Kaufman
,
K. R.
, and
An
,
K. -N.
, 2001, “
In Vitro Simulation of the Stance Phase in Human Gait
,”
Journal of Musculoskeletal Research
,
5
, pp.
113
121
.
8.
Kim
,
K. J.
,
Uchiyama
,
E.
,
Kitaoka
,
H. B.
, and
An
,
K. N.
, 2003, “
An In Vitro Study of Individual Ankle Muscle Actions on the Center of Pressure
,”
Gait Posture
,
17
, pp.
125
131
.
9.
Ward
,
E. D.
,
Smith
,
K. M.
,
Cocheba
,
J. R.
,
Patterson
,
P. E.
, and
Phillips
,
R. D.
, 2003, “
In Vivo Forces in the Plantar Fascia During the Stance Phase of Gait: Sequential Release of the Plantar Fascia
,”
J. Am. Podiatr. Med. Assoc.
8750-7315,
93
, pp.
429
442
.
10.
Howard
,
R. A.
,
Rosvold
,
J. M.
,
Darcy
,
S. P.
,
Corr
,
D. T.
,
Shrive
,
N. G.
,
Tapper
,
J. E.
,
Ronsky
,
J. L.
,
Beveridge
,
J. E.
,
Marchuk
,
L. L.
, and
Frank
,
C. B.
, 2007, “
Reproduction of In Vivo Motion Using a Parallel Robot
,”
ASME J. Biomech. Eng.
0148-0731,
129
, pp.
743
749
.
11.
Cavanagh
,
P. R.
, ed., 1990,
Biomechanics of Distance Running
,
Human Kinetics Publishers
,
Champaign, IL
, pp.
92
93
.
12.
Riley
,
P. O.
,
Dicharry
,
J.
,
Franz
,
J.
,
Croce
,
U. D.
,
Wilder
,
R. P.
, and
Kerrigan
,
D. C.
, 2008, “
A Kinematics and Kinetic Comparison of Overground and Treadmill Running
,”
Med. Sci. Sports Exercise
0195-9131,
40
, pp.
1093
1100
.
13.
Wu
,
G.
,
Siegler
,
S.
,
Allard
,
P.
,
Kirtley
,
C.
,
Leardini
,
A.
,
Rosenbaum
,
D.
,
Whittle
,
M.
,
D’Lima
,
D. D.
,
Cristofolini
,
L.
,
Witte
,
H.
,
Schmid
,
O.
,
Stokes
,
I.
, and
Standardization and Terminology Committee of the International Society of Biomechanics
, 2002, “
ISB Recommendation on Definitions of Joint Coordinate System of Various Joints for the Reporting of Human Joint Motion—Part I: Ankle, Hip, and Spine
,”
J. Biomech.
0021-9290,
35
, pp.
543
548
.
14.
Isman
,
R. E.
, and
Inman
,
V. T.
, 1969, “
Anthropometric Studies of the Human Foot and Ankle
,”
Bull. Prosthet. Res.
0007-506X,
11
, pp.
97
129
.
15.
Yeadon
,
M. R.
, 1990, “
The Simulation of Aerial Movement—I. The Determination of Orientation Angles From Film Data
,”
J. Biomech.
0021-9290,
23
, pp.
59
66
.
16.
Pennock
,
G. R.
, and
Clark
,
K. J.
, 1990, “
An Anatomy-Based Coordinate System for the Description of the Kinematic Displacements in the Human Knee
,”
J. Biomech.
0021-9290,
23
, pp.
1209
1218
.
17.
Woo
,
S. L.
,
Kanamori
,
A.
,
Zeminski
,
J.
,
Yagi
,
M.
,
Papageorgiou
,
C.
, and
Fu
,
F. H.
, 2002, “
The Effectiveness of Reconstruction of the Anterior Cruciate Ligament With Hamstrings and Patellar Tendon. A Cadaveric Study Comparing Anterior Tibial and Rotational Loads
,”
J. Bone Jt. Surg., Am. Vol.
0021-9355,
84-A
, pp.
907
914
.
18.
Motriuk
,
H. U.
, and
Nigg
,
B. M.
, 1990, “
A Technique for Normalizing Centre of Pressure Paths
,”
J. Biomech.
0021-9290,
23
, pp.
927
932
.
19.
Fujie
,
H.
,
Livesay
,
G. A.
,
Woo
,
S. L.
,
Kashiwaguchi
,
S.
, and
Blomstrom
,
G.
, 1995, “
The Use of a Universal Force-Moment Sensor to Determine In-Situ Forces in Ligaments: A New Methodology
,”
ASME J. Biomech. Eng.
0148-0731,
117
, pp.
1
7
.
20.
Lee
,
D. G.
, and
Davis
,
B. L.
, 2009, “
Assessment of the Effects of Diabetes on Midfott Joint Pressure Using a Robotic Gait Simulator
,”
Foot Ankle Int.
1071-1007,
30
, pp.
767
772
.
21.
Grood
,
E. S.
, and
Suntay
,
W. J.
, 1983, “
A Joint Coordinate System for the Clinical Description of Three-Dimensional Motions: Application to the Knee
,”
ASME J. Biomech. Eng.
0148-0731,
105
, pp.
136
144
.
You do not currently have access to this content.