Creep is an active form of time-dependent viscoelastic deformation that occurs in bone tissue during daily life. Recent findings indicate bone mineralization, which is involved in determining the elastic and plastic properties of bone matrix, can also contribute in controlling its viscoelastic property. Nanoindentation viscosity was used as a direct measure for the capacity of a material to resist viscous-like flow under loading. The objectives of this study were to examine (1) whether the nanoindentation viscosity obtained using the traditional viscoelastic Voigt model can describe creep response of bone matrix and (2) how the nanoindentation viscosity is related to contact hardness and elastic modulus. The Voigt model accurately described the creep behavior of bone matrix (r2>0.96,p<0.001). The nanoindentation viscosity had strong relationships with nanoindentation contact hardness (r2=0.94,p<0.001) and modulus (r2=0.83,p<0.001) independent of tissue ages of osteonal bone matrix. The strong positive relationships of nanoindentation viscosity with contact hardness and modulus can be interpreted as increases in the mineral portion of bone matrix may limit the interfibril motion of collagen while enhancing the mechanical stability of bone. We suggest that previous nanoindentation results can be reanalyzed to characterize the viscoelastic creep using the Voigt model.

1.
Lakes
,
R. S.
, 1999,
Viscoelastic Solid
,
CRC
,
New York
, p.
267
.
2.
Garner
,
E.
,
Lakes
,
R.
,
Lee
,
T.
,
Swan
,
C.
, and
Brand
,
R.
, 2000, “
Viscoelastic Dissipation in Compact Bone: Implications for Stress-Induced Fluid Flow in Bone
,”
ASME J. Biomech. Eng.
0148-0731,
122
(
2
), pp.
166
172
.
3.
Rimnac
,
C. M.
,
Petko
,
A. A.
,
Santner
,
T. J.
, and
Wright
,
T. M.
, 1993, “
The Effect of Temperature, Stress and Microstructure on the Creep of Compact Bovine Bone
,”
J. Biomech.
0021-9290,
26
(
3
), pp.
219
228
.
4.
Kim
,
D. -G.
,
Miller
,
M. A.
, and
Mann
,
K. A.
, 2004, “
Creep Dominates Tensile Fatigue Damage of the Cement-Bone Interface
,”
J. Orthop. Res.
0736-0266,
22
(
3
), pp.
633
640
.
5.
George
,
W. T.
, and
Vashishth
,
D.
, 2005, “
Damage Mechanisms and Failure Modes of Cortical Bone Under Components of Physiological Loading
,”
J. Orthop. Res.
0736-0266,
23
(
5
), pp.
1047
1053
.
6.
Martin
,
R. B.
,
Burr
,
D. B.
, and
Sharkey
,
N. A.
, 1998,
Skeletal Tissue Mechanics
,
Springer
,
New York
, p.
79
.
7.
Knott
,
L.
, and
Bailey
,
A. J.
, 1998, “
Collagen Cross-Links in Mineralizing Tissues: A Review of Their Chemistry, Function, and Clinical Relevance
,”
Bone (N.Y.)
8756-3282,
22
(
3
), pp.
181
187
.
8.
Boivin
,
G.
, and
Meunier
,
P. J.
, 2002, “
The Degree of Mineralization of Bone Tissue Measured by Computerized Quantitative Contact Microradiography
,”
Calcif. Tissue Int.
0171-967X,
70
(
6
), pp.
503
511
.
9.
Goodwin
,
K. J.
, and
Sharkey
,
N. A.
, 2002, “
Material Properties of interstitial Lamellae Reflect Local Strain Environments
,”
J. Orthop. Res.
0736-0266,
20
(
3
), pp.
600
606
.
10.
Renders
,
G. A.
,
Mulder
,
L.
,
Langenbach
,
G. E.
,
van Ruijven
,
L. J.
, and
van Eijden
,
T. M.
, 2008, “
Biomechanical Effect of Mineral Heterogeneity in Trabecular Bone
,”
J. Biomech.
0021-9290,
41
(
13
), pp.
2793
2798
.
11.
Currey
,
J. D.
, 2004, “
Tensile Yield in Compact Bone is Determined by Strain, Post-Yield Behaviour by Mineral Content
,”
J. Biomech.
0021-9290,
37
(
4
), pp.
549
556
.
12.
Currey
,
J. D.
, 1988, “
The Effect of Porosity and Mineral Content on the Young's Modulus of Elasticity of Compact Bone
,”
J. Biomech.
0021-9290,
21
(
2
), pp.
131
139
.
13.
Les
,
C. M.
,
Spence
,
C. A.
,
Vance
,
J. L.
,
Christopherson
,
G. T.
,
Patel
,
B.
,
Turner
,
A. S.
,
Divine
,
G. W.
, and
Fyhrie
,
D. P.
, 2004, “
Determinants of Ovine Compact Bone Viscoelastic Properties: Effects of Architecture, Mineralization, and Remodeling
,”
Bone (N.Y.)
8756-3282,
35
(
3
), pp.
729
738
.
14.
Oliver
,
W. C.
, and
Pharr
,
G. M.
, 1992, “
An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement-Sensing Indentation Systems
,”
J. Mater. Res.
0884-2914,
7
(
6
), pp.
1564
1583
.
15.
Huja
,
S. S.
,
Beck
,
F. M.
, and
Thurman
,
D. T.
, 2006, “
Indentation Properties of Young and Old Osteons
,”
Calcif. Tissue Int.
0171-967X,
78
, pp.
392
397
.
16.
Mulder
,
L.
,
Koolstra
,
J. H.
,
den Toonder
,
J. M.
, and
van Eijden
,
T. M.
, 2008, “
Relationship Between Tissue Stiffness and Degree of Mineralization of Developing Trabecular Bone
,”
J. Biomed. Mater. Res. Part A
1549-3296,
84
(
2
), pp.
508
515
.
17.
Oyen
,
M. L.
, and
Ko
,
C. C.
, 2007, “
Examination of Local Variations in Viscous, Elastic, and Plastic Indentation Responses in Healing Bone
,”
J. Mater. Sci.: Mater. Med.
0957-4530,
18
, pp.
623
628
.
18.
Tang
,
B.
,
Ngan
,
A. H.
, and
Lu
,
W. W.
, 2007, “
An Improved Method for the Measurement of Mechanical Properties of Bone by Nanoindentation
,”
J. Mater. Sci.: Mater. Med.
0957-4530,
18
(
9
), pp.
1875
1881
.
19.
Kim
,
D. -G.
, and
Huja
,
S. S.
, 2008, “
Nanoindentation Viscosity of Osteonal Bone Matrix Is Associated With Degree of Mineralization
,”
Trans. Annu. Meet. - Orthop. Res. Soc.
0149-6433,
33
, p.
297
.
20.
Deguchi
,
T.
,
Takano-Yamamoto
,
T.
,
Yabuuchi
,
T.
,
Ando
,
R.
,
Roberts
,
W. E.
, and
Garetto
,
L. P.
, 2008, “
Histomorphometric Evaluation of Alveolar Bone Turnover Between the Maxilla and the Mandible During Experimental Tooth Movement in Dogs
,”
Am. J. Orthod. Dentofacial Orthop.
0889-5406,
133
(
6
), pp.
889
897
.
21.
Rho
,
J. Y.
,
Currey
,
J. D.
,
Zioupos
,
P.
, and
Pharr
,
G. M.
, 2001, “
The Anisotropic Young’s Modulus of Equine Secondary Osteones and Interstitial Bone Determined by Nanoindentation
,”
J. Exp. Biol.
0022-0949,
204
(
10
), pp.
1775
1781
.
22.
Hoffler
,
C. E.
,
Guo
,
X. E.
,
Zysset
,
P. K.
, and
Goldstein
,
S. A.
, 2005, “
An Application of Nanoindentation Technique to Measure Bone Tissue Lamellae Properties
,”
ASME J. Biomech. Eng.
0148-0731,
127
(
7
), pp.
1046
1053
.
23.
Fischer-Cripps
,
A. C.
, 2004,
Nanoindentation
,
Springer
,
New York
, p.
21
.
24.
Fischer-Cripps
,
A. C.
, 2004, “
A Simple Phenomenological Approach to Nanoindentation Creep
,”
Mater. Sci. Eng., A
0921-5093,
385
(
1–2
), pp.
74
82
.
25.
Zhang
,
J.
, and
Fox
,
B. L.
, 2006, “
Characterization and Analysis of Delamination Fracture and Nanocreep Properties in Carbon Epoxy Composites Manufactured by Different Processes
,”
J. Compos. Mater.
0021-9983,
40
(
14
), pp.
1287
1299
.
26.
Vandamme
,
M.
, and
Ulm
,
F. J.
, 2006, “
Viscoelastic Solutions for Conical Indentation
,”
Int. J. Solids Struct.
0020-7683,
43
(
10
), pp.
3142
3165
.
27.
Lakes
,
R.
, and
Saha
,
S.
, 1979, “
Cement Line Motion in Bone
,”
Science
0036-8075,
204
(
4392
), pp.
501
503
.
28.
Marcus
,
R.
, 1996, “
The Nature of Osteoporosis
,”
J. Clin. Endocrinol. Metab.
0021-972X,
81
(
1
), pp.
1
5
.
29.
Sasaki
,
N.
, and
Yoshikawa
,
M.
, 1993, “
Stress Relaxation in Native and EDTA-Treated Bone as a Function of Mineral Content
,”
J. Biomech.
0021-9290,
26
(
1
), pp.
77
83
.
30.
Jäger
,
I. L.
, 2005, “
A Model for the Stability and Creep of Organic Materials
,”
J. Biomech.
0021-9290,
38
(
7
), pp.
1459
1467
.
31.
Boivin
,
G.
,
Bala
,
Y.
,
Doublier
,
A.
,
Farlay
,
D.
,
Ste-Marie
,
L. G.
,
Meunier
,
P. J.
, and
Delmas
,
P. D.
, 2008, “
The Role of Mineralization and Organic Matrix in the Microhardness of Bone Tissue From Controls and Osteoporotic Patients
,”
Bone (N.Y.)
8756-3282,
43
(
3
), pp.
532
538
.
32.
Mulder
,
L.
,
Koolstra
,
J.
,
den Toonder
,
J.
, and
van Eijden
,
T. M. G. J.
, 2007, “
Intratrabecular Distribution of Tissues Stiffness and Mineralization in Developing Trabecular Bone
,”
Bone (N.Y.)
8756-3282,
41
(
2
), pp.
256
265
.
33.
Sasaki
,
N.
,
Nozoe
,
T.
,
Nishihara
,
R.
, and
Fukui
,
A.
, 2008, “
Effect of Mineral Dissolution From Bone Specimens on the Viscoelastic Properties of Cortical Bone
,”
J. Biomech.
0021-9290,
41
(
16
), pp.
3511
3514
.
34.
Hoffler
,
C. E.
,
Moore
,
K. E.
,
Kozloff
,
K.
,
Zysset
,
P. K.
,
Brown
,
M. B.
, and
Goldstein
,
S. A.
, 2000, “
Heterogeneity of Bone Lamellar-Level Elastic Moduli
,”
Bone (N.Y.)
8756-3282,
26
(
6
), pp.
603
609
.
35.
Kim
,
D. -G.
,
Hueni
,
S.
,
Tee
,
B. C.
,
Lee
,
H.
, and
Huja
,
S. S.
, 2009, “
Effect of Nanoindentation Holding Periods on Correlation Between Viscosity and Modulus of Bone Matrix
,”
BMES Fall Meeting
, Pittsburgh, PA, Paper No. 1256.
36.
Fan
,
Z.
, and
Rho
,
J. Y.
, 2003, “
Effects of Viscoelasticity and Time-Dependent Plasticity on Nanoindentation Measurements of Human Cortical Bone
,”
J. Biomed. Mater. Res.
0021-9304,
67A
(
1
), pp.
208
214
.
You do not currently have access to this content.