Quantifying joint congruence may help to understand the relationship between joint function and health. In previous studies, a congruence index (CI) has been used to define subject-specific joint congruence. However, the sensitivity of the CI algorithm to surface representation was unknown. The purpose of this study was to assess the effects of applying five modifications (M1–M5) to the CI algorithm to determine whether the magnitude and variability of the patellofemoral CI is dependent on the surface representation used. The five modifications focused on calculating the CI based on the principal curvature (M1) at the centroid of the contact region, (M2) using an root mean square value for the contact region, (M3) using a mean value for the contact region, (M4) using all digitized points of the patellar surface, and (M5) using all digitized points in contact. The CI found using the contact area (M1, M2, M3, and M5) provides a local measure for congruence, which was shown to increase (decreasing CI) with increasing joint angle. In ten healthy subjects measured with magnetic resonance (MR) images, the patellofemoral joint became significantly more congruent as the knee angle increased from 15 deg to 45 deg using method M5. The magnitude and variability of the patellofemoral CI was dependent on the surface representation used, suggesting that standardization of the surface representation is important to provide a consistent measure. Specifically, M5 provides a local measure of joint congruence, which can account for joint position and orientation. M5 balances the ability to detect differences in congruence between knee angles without introducing high variability.

1.
Bullough
,
P.
, 1992, “
The Pathology of Osteoarthritis
,”
Osteoarthritis: Diagnosis and Medical/Surgical Management
,
W.B. Saunders
,
Philadelphia, PA
, pp.
39
69
.
2.
Eckstein
,
F.
,
Merz
,
B.
,
Schmid
,
P.
, and
Putz
,
R.
, 1994, “
The Influence of Geometry on the Stress Distribution in Joints—A Finite Element Analysis
,”
Anat. Embryol. (Berl)
0340-2061,
189
(
6
), pp.
545
552
.
3.
Stone
,
J. J.
, and
Yu
,
H.
, 1997, “
Computational Contact Analysis of Joint Congruency
,”
Biomed. Sci. Instrum.
0067-8856,
34
, pp.
368
373
.
4.
Ateshian
,
G. A.
,
Rosenwasser
,
M. P.
, and
Mow
,
V. C.
, 1992, “
Curvature Characteristics and Congruence of the Thumb Carpometacarpal Joint: Differences Between Female and Male Joints
,”
J. Biomech.
0021-9290,
25
(
6
), pp.
591
607
.
5.
Douciette
,
S. A.
, and
Goble
,
E. M.
, 1992, “
The Effect of Exercise on Patellar Tracking in Lateral Patellar Compression Syndrome
,”
Am. J. Sports Med.
0363-5465,
20
(
4
), pp.
434
440
.
6.
Hohe
,
J.
,
Ateshian
,
G.
,
Reiser
,
M.
,
Englmeier
,
K. H.
, and
Eckstein
,
F.
, 2002, “
Surface Size, Curvature Analysis, and Assessment of Knee Joint Incongruity With MRI In Vivo
,”
Magn. Reson. Med.
0740-3194,
47
(
3
), pp.
554
561
.
7.
Matthews
,
L. S.
,
Sonstegard
,
D. A.
, and
Henke
,
J. A.
, 1977, “
Load Bearing Characteristics of the Patello-Femoral Joint
,”
Acta Orthop. Scand.
0001-6470,
48
(
5
), pp.
511
516
.
8.
Huberti
,
H. H.
, and
Hayes
,
W. C.
, 1984, “
Patellofemoral Contact Pressures. The Influence of Q-Angle and Tendofemoral Contact
,”
J. Bone Jt. Surg., Am. Vol.
0021-9355,
66
(
5
), pp.
715
724
.
9.
Ronsky
,
J.
, 1994, “
In-Vivo Quantification of Patellofemoral Joint Contact Characteristics
,” Ph.D. thesis, University of Calgary, Calgary, Canada.
10.
Boyd
,
S. K.
, and
Ronsky
,
J. L.
, 2000, “
Normal and ACL-Deficient In Situ Measurement of Patellofemoral Joint Contact
,”
J. Appl. Biomech.
1065-8483,
16
(
2
), pp.
111
123
.
11.
Patel
,
V. V.
,
Hall
,
K.
,
Ries
,
M.
,
Lindsey
,
C.
,
Ozhinsky
,
E.
,
Lu
,
Y.
, and
Majumdar
,
S.
, 2003, “
Magnetic Resonance Imaging of Patellofemoral Kinematics With Weight-Bearing
,”
J. Bone Jt. Surg., Am. Vol.
0021-9355,
85-A
(
12
), pp.
2419
2424
.
12.
Salsich
,
G. B.
,
Ward
,
S. R.
,
Terk
,
M. R.
, and
Powers
,
C. M.
, 2003, “
In Vivo Assessment of Patellofemoral Joint Contact Area in Individuals Who Are Pain Free
,”
Clin. Orthop. Relat. Res.
0009-921X,
2003
(
417
), pp.
277
284
.
13.
Merchant
,
A. C.
,
Mercer
,
R. L.
,
Jacobsen
,
R. H.
, and
Cool
,
C. R.
, 1974, “
Roentgenographic Analysis of Patellofemoral Congruence
,”
J. Bone Jt. Surg., Am. Vol.
0021-9355,
56
(
7
), pp.
1391
1396
.
14.
Kralovic
,
B.
, 2000, “
The Effects of Patellofemoral Kinematics on Joint Congruence and Cartilage Stresses
,” M.Sc. thesis, University of Calgary, Calgary, Canada.
15.
Kwak
,
S. D.
,
Colman
,
W. W.
,
Ateshian
,
G. A.
,
Grelsamer
,
R. P.
,
Henry
,
J. H.
, and
Mow
,
V. C.
, 1997, “
Anatomy of the Human Patellofemoral Joint Articular Cartilage: Surface Curvature Analysis
,”
J. Orthop. Res.
0736-0266,
15
(
3
), pp.
468
472
.
16.
Biscevic
,
M.
,
Tomic
,
D.
,
Starc
,
V.
, and
Smrke
,
D.
, 2005, “
Gender Differences in Knee Kinematics and Its Possible Consequences
,”
Croat. Med. J.
0353-9504,
46
(
2
), pp.
253
260
.
17.
Hollman
,
J.
,
Deusinger
,
R.
,
Van
,
D.
,
Linda
,
R.
, and
Matava
,
M.
, 2003, “
Gender Differences in Surface Rolling and Gliding Kinematics of the Knee
,”
Clin. Orthop. Relat. Res.
0009-921X, pp.
208
221
.
18.
Kerrigan
,
D.
,
Todd
,
M.
, and
Della
,
C.
, 1998, “
Gender Differences in Joint Biomechanics During Walking: Normative Study in Young Adults
,”
Am. J. Phys. Med. Rehabil.
0894-9115,
77
(
1
), pp.
2
7
.
19.
Malinzak
,
R.
,
Colby
,
S.
,
Kirkendall
,
D.
,
Yu
,
B.
, and
Garrett
,
W.
, 2001, “
A Comparison of Knee Joint Motion Patterns Between Men and Women in Selected Athletic Tasks
,”
Clin. Biomech. (Bristol, Avon)
0268-0033,
16
(
5
), pp.
438
445
.
20.
Baker
,
S.
, 2002, “
In-Vivo Quantification of Patellofemoral Joint Contact Force Using a Mathematical Model
,” M.Sc. thesis, University of Calgary, Calgary, Canada.
21.
Baker
,
S.
, and
Ronsky
,
J. L.
, 2002, “
Effect of Hamstrings Inclusion on Calculation of Joint Contact Forces and Stress
,”
Fourth World Congress on Biomechanics
, Calgary, AB, Aug. 4–9.
22.
Boyd
,
S. K.
,
Ronsky
,
J. L.
,
Lichti
,
D. D.
,
Salkauskas
,
K.
, and
Chapman
,
M. A.
, 1999, “
Joint Surface Modeling With Thin-Plate Splines
,”
ASME J. Biomech. Eng.
0148-0731,
121
(
5
), pp.
525
532
.
23.
Corazza
,
F.
,
Stagni
,
R.
,
Castelli
,
V. P.
, and
Leardini
,
A.
, 2005, “
Articular Contact at the Tibiotalar Joint in Passive Flexion
,”
J. Biomech.
0021-9290,
38
(
6
), pp.
1205
1212
.
24.
Moss
,
R.
, 2001, “
Characterization of Joint Cartilage Deformation Using Magnetic Resonance Imaging
,” M.Sc. thesis, University of Calgary, Calgary, Canada.
25.
Cohen
,
Z. A.
,
McCarthy
,
D. M.
,
Kwak
,
S. D.
,
Legrand
,
P.
,
Fogarasi
,
F.
,
Ciaccio
,
E. J.
, and
Ateshian
,
G. A.
, 1999, “
Knee Cartilage Topography, Thickness, and Contact Areas From MRI: In-Vitro Calibration and In-Vivo Measurements
,”
Osteoarthritis Cartilage
1063-4584,
7
(
1
), pp.
95
109
.
26.
Besier
,
T. F.
,
Draper
,
C. E.
,
Gold
,
G. E.
,
Beaupre
,
G. S.
, and
Delp
,
S. L.
, 2005, “
Patellofemoral Joint Contact Area Increases With Knee Flexion and Weight-Bearing
,”
J. Orthop. Res.
0736-0266,
23
(
2
), pp.
345
350
.
You do not currently have access to this content.