Heart failure continues to present a significant medical and economic burden throughout the developed world. Novel treatments involving the injection of polymeric materials into the myocardium of the failing left ventricle (LV) are currently being developed, which may reduce elevated myofiber stresses during the cardiac cycle and act to retard the progression of heart failure. A finite element (FE) simulation-based method was developed in this study that can automatically optimize the injection pattern of the polymeric “inclusions” according to a specific objective function, using commercially available software tools. The FE preprocessor TRUEGRID® was used to create a parametric axisymmetric LV mesh matched to experimentally measured end-diastole and end-systole metrics from dogs with coronary microembolization-induced heart failure. Passive and active myocardial material properties were defined by a pseudo-elastic-strain energy function and a time-varying elastance model of active contraction, respectively, that were implemented in the FE software LS-DYNA. The companion optimization software LS-OPT was used to communicate directly with TRUEGRID® to determine FE model parameters, such as defining the injection pattern and inclusion characteristics. The optimization resulted in an intuitive optimal injection pattern (i.e., the one with the greatest number of inclusions) when the objective function was weighted to minimize mean end-diastolic and end-systolic myofiber stress and ignore LV stroke volume. In contrast, the optimization resulted in a nonintuitive optimal pattern (i.e., 3 inclusions longitudinally×6 inclusions circumferentially) when both myofiber stress and stroke volume were incorporated into the objective function with different weights.

1.
Guccione
,
J. M.
,
Moonly
,
S. M.
,
Wallace
,
A. W.
, and
Ratcliffe
,
M. B.
, 2001, “
Residual Stress Produced by Ventricular Volume Reduction Surgery Has Little Effect on Ventricular Function and Mechanics: A Finite Element Model Study
,”
J. Thorac. Cardiovasc. Surg.
0022-5223,
122
(
3
), pp.
592
599
.
2.
Gorscan
,
J.
,
Feldman
,
A.
,
Kormos
,
R.
,
Mandarino
,
W.
,
Demetris
,
A.
, and
Batista
,
R.
, 1998, “
Heterogeneous Immediate Effects of Partial Left Ventriculectomy on Cardiac Performance
,”
Circulation
0009-7322,
97
(
9
), pp.
839
842
.
3.
Ratcliffe
,
M. B.
,
Hong
,
J.
,
Salahieh
,
A.
,
Ruch
,
S.
, and
Wallace
,
A. W.
, 1998, “
The Effect of Ventricular Volume Reduction Surgery in the Dilated, Poorly Contractile Left Ventricle: A Simple Finite Element Analysis
,”
J. Thorac. Cardiovasc. Surg.
0022-5223,
116
(
4
), pp.
566
577
.
4.
Guccione
,
J. M.
,
Salahieh
,
A.
,
Moonly
,
S. M.
,
Kortsmit
,
J.
,
Wallace
,
A. W.
, and
Ratcliffe
,
M. B.
, 2003, “
Myosplint Decreases Wall Stress Without Depressing Function in the Failing Heart: A Finite Element Model Study
,”
Ann. Thorac. Surg.
0003-4975,
76
(
4
), pp.
1171
1180
.
5.
Starling
,
R. C.
,
Jessup
,
M.
,
Oh
,
J. K.
,
Sabbah
,
H. N.
,
Acker
,
M. A.
,
Mann
,
D. L.
, and
Kubo
,
S. H.
, 2007, “
Sustained Benefits of the CorCap Cardiac Support Device on Left Ventricular Remodeling: Three Year Follow-Up Results From the Acorn Clinical Trial
,”
Ann. Thorac. Surg.
0003-4975,
84
(
4
), pp.
1236
1242
.
6.
Klodell
,
C. T.
, Jr.
,
Aranda
,
J. M.
, Jr.
,
McGiffin
,
D. C.
,
Rayburn
,
B. K.
,
Sun
,
B.
,
Abraham
,
W. T.
,
Pae
,
W. E.
, Jr.
,
Boehmer
,
J. P.
,
Klein
,
H.
, and
Huth
,
C.
, 2008, “
Worldwide Surgical Experience With the Paracor HeartNet Cardiac Restraint Device
,”
J. Thorac. Cardiovasc. Surg.
0022-5223,
135
(
1
), pp.
188
195
.
7.
Wall
,
S. T.
,
Walker
,
J. C.
,
Healy
,
K. E.
,
Ratcliffe
,
M. B.
, and
Guccione
,
J. M.
, 2006, “
Theoretical Impact of the Injection of Material Into the Myocardium: A Finite Element Model Simulation
,”
Circulation
0009-7322,
114
(
24
), pp.
2627
2635
.
8.
Sabbah
,
H. N.
,
Stein
,
P. D.
,
Kono
,
T.
,
Gheorghiade
,
M.
,
Levine
,
T. B.
,
Jafri
,
S.
,
Hawkins
,
E. T.
, and
Goldstein
,
S.
, 1991, “
A Canine Model of Chronic Heart Failure Produced by Multiple Sequential Coronary Microembolizations
,”
Am. J. Physiol. Heart Circ. Physiol.
0363-6135,
260
(
4
), pp.
H1379
H184
.
9.
Sabbah
,
H. N.
,
Shimoyama
,
H.
,
Kono
,
T.
,
Gupta
,
R. C.
,
Sharov
,
V. G.
,
Scicli
,
G.
,
Levine
,
T. B.
, and
Goldstein
,
S.
, 1994, “
Effects of Long-Term Monotherapy With Enalapril, Metoprolol, and Digoxin on the Progression of Left Ventricular Dysfunction and Dilation in Dogs With Reduced Ejection Fraction
,”
Circulation
0009-7322,
89
(
6
), pp.
2852
2859
.
10.
Guccione
,
J. M.
,
McCulloch
,
A. D.
, and
Waldman
,
L. K.
, 1991, “
Passive Material Properties of Intact Ventricular Myocardium Determined From a Cylindrical Model
,”
ASME J. Biomech. Eng.
0148-0731,
113
(
1
), pp.
42
55
.
11.
Guccione
,
J. M.
,
Waldman
,
L. K.
, and
McCulloch
,
A. D.
, 1993, “
Mechanics of Active Contraction in Cardiac Muscle: Part II–Cylindrical Models of the Systolic Left Ventricle
,”
ASME J. Biomech. Eng.
0148-0731,
115
(
1
), pp.
82
90
.
12.
Tozeren
,
A.
, 1985, “
Continuum Rheology of Muscle Contraction and Its Application to Cardiac Contractility
,”
Biophys. J.
0006-3495,
47
(
3
), pp.
303
309
.
13.
Guccione
,
J. M.
,
Costa
,
K. D.
, and
McCulloch
,
A. D.
, 1995, “
Finite Element Stress Analysis of Left Ventricular Mechanics in the Beating Dog Heart
,”
ASME J. Biomech.
,
28
(
10
), pp.
1167
1177
. 0021-9290
14.
Lin
,
D. H.
, and
Yin
,
F. C.
, 1998, “
A Multiaxial Constitutive Law for Mammalian Left Ventricular Myocardium in Steady-State Barium Contracture or Tetanus
,”
ASME J. Biomech. Eng.
0148-0731,
120
(
4
), pp.
504
517
.
15.
Walker
,
J. C.
,
Ratcliffe
,
M. B.
,
Zhang
,
P.
,
Wallace
,
A. W.
,
Fata
,
B.
,
Hsu
,
E. W.
,
Saloner
,
D.
, and
Guccione
,
J. M.
, 2005, “
MRI-Based Finite-Element Analysis of Left Ventricular Aneurysm
,”
Am. J. Physiol. Heart Circ. Physiol.
0363-6135,
289
(
2
), pp.
H692
700
.
16.
Usyk
,
T. P.
,
Mazhari
,
R.
, and
McCulloch
,
A. D.
, 2000, “
Effect of Laminar Orthotropic Myofiber Architecture on Regional Stress and Strain in the Canine Left Ventricle
,”
J. Elast.
0374-3535,
61
, pp.
143
164
.
17.
Stander
,
N.
,
Roux
,
W.
,
Eggleston
,
T.
, and
Craig
,
K.
, 2007, LS-OPT User’s Manual Version 3.2.
18.
Dang
,
A. B.
,
Guccione
,
J. M.
,
Zhang
,
P.
,
Wallace
,
A. W.
,
Gorman
,
R. C.
,
Gorman
,
J. H.
, III
, and
Ratcliffe
,
M. B.
, 2005, “
Effect of Ventricular Size and Patch Stiffness in Surgical Anterior Ventricular Restoration: A Finite Element Model Study
,”
Ann. Thorac. Surg.
0003-4975,
79
(
1
), pp.
185
193
.
19.
Walker
,
J. C.
,
Ratcliffe
,
M. B.
,
Zhang
,
P.
,
Wallace
,
A. W.
,
Hsu
,
E. W.
,
Saloner
,
D. A.
, and
Guccione
,
J. M.
, 2008, “
Magnetic Resonance Imaging-Based Finite Element Stress Analysis After Linear Repair of Left Ventricular Aneurysm
,”
J. Thorac. Cardiovasc. Surg.
0022-5223,
135
(
5
), pp.
1094
1102
.
20.
Okamoto
,
R. J.
,
Moulton
,
M. J.
,
Peterson
,
S. J.
,
Li
,
D.
,
Pasque
,
M. K.
, and
Guccione
,
J. M.
, 2000, “
Epicardial Suction: A New Approach to Mechanical Testing of the Passive Ventricular Wall
,”
ASME J. Biomech. Eng.
0148-0731,
122
(
5
), pp.
479
487
.
21.
Dang
,
A. B.
,
Guccione
,
J. M.
,
Mishell
,
J. M.
,
Zhang
,
P.
,
Wallace
,
A. W.
,
Gorman
,
R. C.
,
Gorman
,
J. H.
, III
, and
Ratcliffe
,
M. B.
, 2005, “
Akinetic Myocardial Infarcts Must Contain Contracting Myocytes: Finite-Element Model Study
,”
Am. J. Physiol. Heart Circ. Physiol.
0363-6135,
288
(
4
), pp.
H1844
H1850
.
22.
Walker
,
J. C.
,
Guccione
,
J. M.
,
Jiang
,
Y.
,
Zhang
,
P.
,
Wallace
,
A. W.
,
Hsu
,
E. W.
, and
Ratcliffe
,
M. B.
, 2005, “
Helical Myofiber Orientation After Myocardial Infarction and Left Ventricular Surgical Restoration in Sheep
,”
J. Thorac. Cardiovasc. Surg.
0022-5223,
129
(
2
), pp.
382
390
.
23.
Ozturk
,
C.
, and
McVeigh
,
E. R.
, 2000, “
Four-Dimensional B-Spline Based Motion Analysis of Tagged MR Images: Introduction and In Vivo Validation
,”
Phys. Med. Biol.
0031-9155,
45
(
6
), pp.
1683
1702
.
You do not currently have access to this content.