Finite element modeling represents an established method for the comprehension of the mitral function and for the simulation of interesting clinical scenarios. However, current models still do not include all the key aspects of the real system. We implemented a new structural finite element model that considers (i) an accurate morphological description of the valve, (ii) a description of the tissues’ mechanical properties that accounts for anisotropy and nonlinearity, and (iii) dynamic boundary conditions that mimic annulus and papillary muscles’ contraction. The influence of such contraction on valve biomechanics was assessed by comparing the computed results with the ones obtained through an auxiliary model with fixed annulus and papillary muscles. At the systolic peak, the leaflets’ maximum principal stress contour showed peak values in the anterior leaflet at the strut chordae insertion zone (300 kPa) and near the annulus (200–250 kPa), while much lower values were detected in the posterior leaflet. Both leaflets underwent larger tensile strains in the longitudinal direction, while in the circumferential one the anterior leaflet experienced nominal tensile strains up to 18% and the posterior one experienced compressive strains up to 23% associated with the folding of commissures and paracommissures, consistently with tissue redundancy. The force exerted by papillary muscles at the systolic peak was equal to 4.11 N, mainly borne by marginal chordae (76% of the force). Local reaction forces up to 45 mN were calculated on the annulus, leading to tensions of 89 N/m and 54 N/m for its anterior and posterior tracts, respectively. The comparison with the results of the auxiliary model showed that annular contraction mainly affects the leaflets’ circumferential strains. When it was suppressed, no more compressive strains could be observed and peak strain values were located in the belly of the anterior leaflet. Computational results agree to a great extent with experimental data from literature. They provided insight into some of the features characterizing normal mitral function, such as annular contraction and leaflets’ tissue anisotropy and nonlinearity. Some of the computed results may be useful in the design of surgical devices and techniques. In particular, forces applied on the annulus by the surrounding tissues could be considered as an indication for annular prostheses design.

1.
Grigioni
,
F.
,
Enriquez-Sarano
,
M.
,
Zehr
,
K. J.
,
Bailey
,
K. R.
, and
Tajik
,
A. J.
, 2001, “
Ischemic Mitral Regurgitation: Long-Term Outcome and Prognostic Implications With Quantitative Doppler Assessment
,”
Circulation
0009-7322,
103
(
13
), pp.
1759
1764
.
2.
St John Sutton
,
M.
, and
Weyman
,
A. E.
, 2002, “
Mitral Valve Prolapse Prevalence and Complications: An Ongoing Dialogue
,”
Circulation
0009-7322,
106
(
11
), pp.
1305
1307
.
3.
Thourani
,
V. H.
,
Weintraub
,
W. S.
,
Guyton
,
R. A.
,
Jones
,
E. L.
,
Williams
,
W. H.
,
Elkabbani
,
S.
, and
Craver
,
J. M.
, 2003, “
Outcomes and Long-Term Survival for Patients Undergoing Mitral Valve Repair Versus Replacement: Effect of Age and Concomitant Coronary Artery Bypass Grafting
,”
Circulation
0009-7322,
108
(
3
), pp.
298
304
.
4.
Reece
,
T. B.
,
Tribble
,
C. G.
,
Ellman
,
P. I.
,
Maxey
,
T. S.
,
Woodford
,
R. L.
,
Dimeling
,
G. M.
,
Wellons
,
H. A.
,
Crosby
,
I. K.
,
Kern
,
J. A.
, and
Kron
,
I. L.
, 2004, “
Mitral Repair Is Superior to Replacement When Associated With Coronary Artery Disease
,”
Ann. Surg.
0003-4932,
239
(
5
), pp.
671
675
.
5.
Enriquez-Sarano
,
M.
,
Schaff
,
H. V.
,
Orszulak
,
T. A.
,
Tajik
,
A. J.
,
Bailey
,
K. R.
, and
Frye
,
R. L.
, 1995, “
Valve Repair Improves the Outcome of Surgery for Mitral Regurgitation. A Multivariate Analysis
,”
Circulation
0009-7322,
91
(
4
), pp.
1022
1028
.
6.
Grossi
,
E. A.
,
Goldberg
,
J. D.
,
LaPietra
,
A.
,
Ye
,
X.
,
Zakow
,
P.
,
Sussman
,
M.
,
Delianides
,
J.
,
Culliford
,
A. T.
,
Esposito
,
R. A.
,
Ribakove
,
G. H.
,
Galloway
,
A. C.
, and
Colvin
,
S. B.
, 2001, “
Ischemic Mitral Valve Reconstruction and Replacement: Comparison of Long-Term Survival and Complications
,”
J. Thorac. Cardiovasc. Surg.
0022-5223,
122
(
6
), pp.
1107
1124
.
7.
Kunzelman
,
K. S.
,
Reimink
,
M. S.
, and
Cochran
,
R. P.
, 1997, “
Annular Dilatation Increases Stress in the Mitral Valve and Delays Coaptation: A Finite Element Computer Model
,”
Cardiovasc. Surg.
0967-2109,
5
(
4
), pp.
427
434
.
8.
Kunzelman
,
K. S.
,
Quick
,
D. W.
, and
Cochran
,
R. P.
, 1998, “
Altered Collagen Concentration in Mitral Valve Leaflets: Biochemical and Finite Element Analysis
,”
Ann. Thorac. Surg.
0003-4975,
66
(
6
), pp.
S198
205
.
9.
Votta
,
E.
,
Maisano
,
F.
,
Soncini
,
M.
,
Redaelli
,
A.
,
Montevecchi
,
F. M.
, and
Alfieri
,
O.
, 2002, “
3-D Computational Analysis of the Stress Distribution on the Leaflets After Edge-to-Edge Repair of Mitral Regurgitation
,”
J. Heart Valve Dis.
0966-8519,
11
(
6
), pp.
810
822
.
10.
Votta
,
E.
,
Maisano
,
F.
,
Bolling
,
S. F.
,
Alfieri
,
O.
,
Montevecchi
,
F. M.
, and
Redaelli
,
A.
, 2007, “
The Geoform Disease-Specific Annuloplasty System: A Finite Element Study
,”
Ann. Thorac. Surg.
0003-4975,
84
(
1
), pp.
92
101
.
11.
Maisano
,
F.
,
Redaelli
,
A.
,
Soncini
,
M.
,
Votta
,
E.
,
Arcobasso
,
L.
, and
Alfieri
,
O.
, 2005, “
An Annular Prosthesis for the Treatment of Functional Mitral Regurgitation: Finite Element Model Analysis of a Dog Bone-Shaped Ring Prosthesis
,”
Ann. Thorac. Surg.
0003-4975,
79
(
4
), pp.
1268
1275
.
12.
Dal Pan
,
F.
,
Donzella
,
G.
,
Fucci
,
C.
, and
Schreiber
,
M.
, 2005, “
Structural Effects of an Innovative Surgical Technique to Repair Heart Valve Defects
,”
J. Biomech.
0021-9290,
38
(
12
), pp.
2460
2471
.
13.
Kunzelman
,
K. S.
,
Cochran
,
R. P.
,
Chuong
,
C.
,
Ring
,
W. S.
,
Verrier
,
E. D.
, and
Eberhart
,
R. D.
, 1993, “
Finite Element Analysis of the Mitral Valve
,”
J. Heart Valve Dis.
0966-8519,
2
(
3
), pp.
326
340
.
14.
Lim
,
K. H.
,
Yeo
,
J. H.
, and
Duran
,
C. M.
, 2005, “
Three-Dimensional Asymmetrical Modeling of the Mitral Valve: A Finite Element Study With Dynamic Boundaries
,”
J. Heart Valve Dis.
0966-8519,
14
(
3
), pp.
386
392
.
15.
Prot
,
V.
,
Haaverstad
,
R.
, and
Skallerud
,
B.
, 2009, “
Finite Element Analysis of the Mitral Apparatus: Annulus Shape Effect and Chordal Force Distribution
,”
Biomech. Model. Mechanobiol.
1617-7959,
8
(
1
), pp.
43
55
.
16.
Weinberg
,
E. J.
, and
Kaazempur-Mofrad
,
M. R.
, 2006, “
A Large-Strain Finite Element Formulation for Biological Tissues With Application to Mitral Valve Leaflet Tissue Mechanics
,”
J. Biomech.
0021-9290,
39
(
8
), pp.
1557
1561
.
17.
Weinberg
,
E. J.
, and
Kaazempur Mofrad
,
M. R.
, 2007, “
A Finite Shell Element for Heart Mitral Valve Leaflet Mechanics, With Large Deformations and 3D Constitutive Material Model
,”
J. Biomech.
0021-9290,
40
(
3
), pp.
705
711
.
18.
Einstein
,
D. R.
,
Kunzelman
,
K. S.
,
Reinhall
,
P. G.
,
Nicosia
,
M. A.
, and
Cochran
,
R. P.
, 2005, “
Non-Linear Fluid-Coupled Computational Model of the Mitral Valve
,”
J. Heart Valve Dis.
0966-8519,
14
(
3
), pp.
376
385
.
19.
Kunzelman
,
K. S.
,
Einstein
,
D. R.
, and
Cochran
,
R. P.
, 2007, “
Fluid-Structure Interaction Models of the Mitral Valve: Function in Normal and Pathological States
,”
Philos. Trans. R. Soc. London, Ser. B
0962-8436,
362
(
1484
), pp.
1393
1406
.
20.
Kunzelman
,
K. S.
,
Cochran
,
R. P.
,
Verrier
,
E. D.
, and
Eberhart
,
R. C.
, 1994, “
Anatomic Basis for Mitral Valve Modelling
,”
J. Heart Valve Dis.
0966-8519,
3
(
5
), pp.
491
496
.
21.
Timek
,
T. A.
,
Green
,
G. R.
,
Tibayan
,
F. A.
,
Lai
,
D. T.
,
Rodriguez
,
F.
,
Liang
,
D.
,
Daughters
,
G. T.
,
Ingels
,
N. B.
, Jr.
, and
Miller
,
D. C.
, 2003, “
Aorto-Mitral Annular Dynamics
,”
Ann. Thorac. Surg.
0003-4975,
76
(
6
), pp.
1944
1950
.
22.
Dagum
,
P.
,
Timek
,
T.
,
Green
,
G. R.
,
Daughters
,
G. T.
,
Liang
,
D.
,
Ingels
,
N. B.
, Jr.
, and
Miller
,
D. C.
, 2001, “
Three-Dimensional Geometric Comparison of Partial and Complete Flexible Mitral Annuloplasty Rings
,”
J. Thorac. Cardiovasc. Surg.
0022-5223,
122
(
4
), pp.
665
673
.
23.
Sakai
,
T.
,
Okita
,
Y.
,
Ueda
,
Y.
,
Tahata
,
T.
,
Ogino
,
H.
,
Matsuyama
,
K.
, and
Miki
,
S.
, 1999, “
Distance Between Mitral Annulus and Papillary Muscles: Anatomic Study in Normal Human Hearts
,”
J. Thorac. Cardiovasc. Surg.
0022-5223,
118
(
4
), pp.
636
641
.
24.
Veronesi
,
F.
,
Corsi
,
C.
,
Sugeng
,
L.
,
Caiani
,
E. G.
,
Weinert
,
L.
,
Mor-Avi
,
V.
,
Cerutti
,
S.
,
Lamberti
,
C.
, and
Lang
,
R. M.
, 2008, “
Quantification of Mitral Apparatus Dynamics in Functional and Ischemic Mitral Regurgitation Using Real-Time 3-Dimensional Echocardiography
,”
J. Am. Soc. Echocardiogr
0894-7317,
21
(
4
), pp.
347
354
.
25.
Liao
,
J.
, and
Vesely
,
I.
, 2003, “
A Structural Basis for the Size-Related Mechanical Properties of Mitral Valve Chordae Tendineae
,”
J. Biomech.
0021-9290,
36
(
8
), pp.
1125
1133
.
26.
Kunzelman
,
K. S.
,
Cochran
,
R. P.
,
Murphree
,
S. S.
,
Ring
,
W. S.
,
Verrier
,
E. D.
, and
Eberhart
,
R. C.
, 1993, “
Differential Collagen Distribution in the Mitral Valve and Its Influence on Biomechanical Behaviour
,”
J. Heart Valve Dis.
0966-8519,
2
(
2
), pp.
236
244
.
27.
May-Newman
,
K.
, and
Yin
,
F. C.
, 1998, “
A Constitutive Law for Mitral Valve Tissue
,”
ASME J. Biomech. Eng.
0148-0731,
120
(
1
), pp.
38
47
.
28.
Chen
,
L.
,
Yin
,
F. C.
, and
May-Newman
,
K.
, 2004, “
The Structure and Mechanical Properties of the Mitral Valve Leaflet-Strut Chordae Transition Zone
,”
ASME J. Biomech. Eng.
0148-0731,
126
(
2
), pp.
244
251
.
29.
Kunzelman
,
K. S.
, and
Cochran
,
R. P.
, 1990, “
Mechanical Properties of Basal and Marginal Mitral Valve Chordae Tendineae
,”
ASAIO Trans.
0889-7190,
36
(
3
), pp.
M405
408
.
30.
Lansac
,
E.
,
Lim
,
K. H.
,
Shomura
,
Y.
,
Goetz
,
W. A.
,
Lim
,
H. S.
,
Rice
,
N. T.
,
Saber
,
H.
, and
Duran
,
C. M.
, 2002, “
Dynamic Balance of the Aortomitral Junction
,”
J. Thorac. Cardiovasc. Surg.
0022-5223,
123
(
5
), pp.
911
918
.
31.
Ormiston
,
J. A.
,
Shah
,
P. M.
,
Tei
,
C.
, and
Wong
,
M.
, 1981, “
Size and Motion of the Mitral Valve Annulus in Man. I. A Two-Dimensional Echocardiographic Method and Findings in Normal Subjects
,”
Circulation
0009-7322,
64
(
1
), pp.
113
120
.
32.
Fyrenius
,
A.
,
Engvall
,
J.
, and
Janerot-Sjoberg
,
B.
, 2001, “
Major and Minor Axes of the Normal Mitral Annulus
,”
J. Heart Valve Dis.
0966-8519,
10
(
2
), pp.
146
152
.
33.
Gorman
,
J. H.
, III
,
Jackson
,
B. M.
,
Enomoto
,
Y.
, and
Gorman
,
R. C.
, 2004, “
The Effect of Regional Ischemia on Mitral Valve Annular Saddle Shape
,”
Ann. Thorac. Surg.
0003-4975,
77
(
2
), pp.
544
548
.
34.
Flachskampf
,
F. A.
,
Chandra
,
S.
,
Gaddipatti
,
A.
,
Levine
,
R. A.
,
Weyman
,
A. E.
,
Ameling
,
W.
,
Hanrath
,
P.
, and
Thomas
,
J. D.
, 2000, “
Analysis of Shape and Motion of the Mitral Annulus in Subjects With and Without Cardiomyopathy by Echocardiographic 3-Dimensional Reconstruction
,”
J. Am. Soc. Echocardiogr
0894-7317,
13
(
4
), pp.
277
287
.
35.
Komoda
,
T.
,
Hetzer
,
R.
,
Uyama
,
C.
,
Siniawski
,
H.
,
Maeta
,
H.
,
Rosendahl
,
U. P.
, and
Ozaki
,
K.
, 1994, “
Mitral Annular Function Assessed by 3D Imaging for Mitral Valve Surgery
,”
J. Heart Valve Dis.
0966-8519,
3
(
5
), pp.
483
490
.
36.
Dagum
,
P.
,
Timek
,
T. A.
,
Green
,
G. R.
,
Lai
,
D.
,
Daughters
,
G. T.
,
Liang
,
D. H.
,
Hayase
,
M.
,
Ingels
,
N. B.
, Jr.
, and
Miller
,
D. C.
, 2000, “
Coordinate-Free Analysis of Mitral Valve Dynamics in Normal and Ischemic Hearts
,”
Circulation
0009-7322,
102
(
19
), pp.
III62
69
.
37.
Votta
,
E.
,
Caiani
,
E.
,
Veronesi
,
F.
,
Soncini
,
M.
,
Montevecchi
,
F. M.
, and
Redaelli
,
A.
, 2008, “
Mitral Valve Finite-Element Modelling From Ultrasound Data: A Pilot Study for a New Approach to Understand Mitral Function and Clinical Scenarios
,”
Philos. Trans. R. Soc. London, Ser. A
0962-8428,
366
(
1879
), pp.
3411
3434
.
38.
Timek
,
T.
,
Glasson
,
J. R.
,
Dagum
,
P.
,
Green
,
G. R.
,
Nistal
,
J. F.
,
Komeda
,
M.
,
Daughters
,
G. T.
,
Bolger
,
A. F.
,
Foppiano
,
L. E.
,
Ingels
,
N. B.
, Jr.
, and
Miller
,
D. C.
, 2000, “
Ring Annuloplasty Prevents Delayed Leaflet Coaptation and Mitral Regurgitation During Acute Left Ventricular Ischemia
,”
J. Thorac. Cardiovasc. Surg.
0022-5223,
119
(
4
), pp.
774
783
.
39.
Jensen
,
M. O.
,
Fontaine
,
A. A.
, and
Yoganathan
,
A. P.
, 2001, “
Improved In Vitro Quantification of the Force Exerted by the Papillary Muscle on the Left Ventricular Wall: Three-Dimensional Force Vector Measurement System
,”
Ann. Biomed. Eng.
0090-6964,
29
(
5
), pp.
406
413
.
40.
Sacks
,
M. S.
,
He
,
Z.
,
Baijens
,
L.
,
Wanant
,
S.
,
Shah
,
P.
,
Sugimoto
,
H.
, and
Yoganathan
,
A. P.
, 2002, “
Surface Strains in the Anterior Leaflet of the Functioning Mitral Valve
,”
Ann. Biomed. Eng.
0090-6964,
30
(
10
), pp.
1281
1290
.
41.
He
,
Z.
,
Ritchie
,
J.
,
Grashow
,
J. S.
,
Sacks
,
M. S.
, and
Yoganathan
,
A. P.
, 2005, “
In Vitro Dynamic Strain Behavior of the Mitral Valve Posterior Leaflet
,”
ASME J. Biomech. Eng.
0148-0731,
127
(
3
), pp.
504
511
.
42.
Liao
,
J.
,
Yang
,
L.
,
Grashow
,
J.
, and
Sacks
,
M. S.
, 2007, “
The Relation Between Collagen Fibril Kinematics and Mechanical Properties in the Mitral Valve Anterior Leaflet
,”
ASME J. Biomech. Eng.
0148-0731,
129
(
1
), pp.
78
87
.
43.
Jimenez
,
J. H.
,
Soerensen
,
D. D.
,
He
,
Z.
,
He
,
S.
, and
Yoganathan
,
A. P.
, 2003, “
Effects of a Saddle Shaped Annulus on Mitral Valve Function and Chordal Force Distribution: An In Vitro Study
,”
Ann. Biomed. Eng.
0090-6964,
31
(
10
), pp.
1171
1181
.
44.
He
,
Z.
, and
Bhattacharya
,
S.
, 2008, “
Papillary Muscle and Annulus Size Effect on Anterior and Posterior Annulus Tension of the Mitral Valve: An Insight Into Annulus Dilatation
,”
J. Biomech.
0021-9290,
41
(
11
), pp.
2524
2532
.
45.
Prot
,
V.
,
Skallerud
,
B.
, and
Holzapfel
,
G. A.
, 2007, “
Transversely Isotropic Membrane Shells With Application to Mitral Valve Mechanics. Constitutive Modelling and Finite Element Implementation
,”
Int. J. Numer. Methods Eng.
0029-5981,
71
(
8
), pp.
987
1008
.
46.
Weiss
,
J. A.
,
Maker
,
B. N.
, and
Govindjee
,
S.
, 1996, “
Finite Element Implementation of Incompressible, Transversely Isotropic Hyperelasticity
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
135
(
1–2
), pp.
107
128
.
47.
Bischoff
,
J. E.
, 2006, “
Continuous Versus Discrete (Invariant) Representations of Fibrous Structure for Modeling Non-Linear Anisotropic Soft Tissue Behavior
,”
Int. J. Non-Linear Mech.
0020-7462,
41
(
2
), pp.
167
179
.
48.
Cochran
,
R. P.
,
Kunzelman
,
K. S.
,
Chuong
,
C. J.
,
Sacks
,
M. S.
, and
Eberhart
,
R. C.
, 1991, “
Nondestructive Analysis of Mitral Valve Collagen Fiber Orientation
,”
ASAIO Trans.
0889-7190,
37
(
3
), pp.
M447
448
.
49.
Freed
,
A. D.
,
Einstein
,
D. R.
, and
Vesely
,
I.
, 2005, “
Invariant Formulation for Dispersed Transverse Isotropy in Aortic Heart Valves: An Efficient Means for Modeling Fiber Splay
,”
Biomech. Model. Mechanobiol.
1617-7959,
4
(
2–3
), pp.
100
117
.
50.
Gasser
,
T. C.
,
Ogden
,
R. W.
, and
Holzapfel
,
G. A.
, 2006, “
Hyperelastic Modelling of Arterial Layers With Distributed Collagen Fibre Orientations
,”
J. R. Soc., Interface
1742-5689,
3
(
6
), pp.
15
35
.
51.
Komeda
,
M.
,
Glasson
,
J. R.
,
Bolger
,
A. F.
,
Daughters
,
G. T.
, II
,
Niczyporuk
,
M. A.
,
Ingels
,
N. B.
, Jr.
, and
Miller
,
D. C.
, 1996, “
Three-Dimensional Dynamic Geometry of the Normal Canine Mitral Annulus and Papillary Muscles
,”
Circulation
0009-7322,
94
(
9
), pp.
II159
163
.
52.
Komeda
,
M.
,
Glasson
,
J. R.
,
Bolger
,
A. F.
,
Daughters
,
G. T.
, II
,
MacIsaac
,
A.
,
Oesterle
,
S. N.
,
Ingels
,
N. B.
, Jr.
, and
Miller
,
D. C.
, 1997, “
Geometric Determinants of Ischemic Mitral Regurgitation
,”
Circulation
0009-7322,
96
(
9
), pp.
II128
133
.
53.
Salisbury
,
P. F.
,
Cross
,
C. E.
, and
Rieben
,
P. A.
, 1963, “
Chorda Tendinea Tension
,”
Am. J. Physiol.
0002-9513,
205
, pp.
385
392
.
54.
Krishnamurthy
,
G.
,
Ennis
,
D. B.
,
Itoh
,
A.
,
Bothe
,
W.
,
Swanson
,
J. C.
,
Karlsson
,
M.
,
Kuhl
,
E.
,
Miller
,
D. C.
, and
Ingels
,
N. B.
, Jr.
, 2008, “
Material Properties of the Ovine Mitral Valve Anterior Leaflet In Vivo From Inverse Finite Element Analysis
,”
Am. J. Physiol. Heart Circ. Physiol.
0363-6135,
295
(
3
), pp.
H1141
H1149
.
You do not currently have access to this content.