Noninvasive measurement of scapular kinematics using skin surface markers presents technical challenges due to the relative movement between the scapula and the overlying skin. The objectives of this study were to develop a noninvasive subject-specific skin correction factor that would enable a more accurate measurement of scapular kinematics and evaluate this new technique via comparison with a gold standard for scapular movement. Scapular kinematics were directly measured using bone pins instrumented with optoelectronic marker carriers in eight healthy volunteers while skin motion was measured simultaneously with optoelectronic markers attached to the skin surface overlying the scapula. The relative motion between the skin markers and the underlying scapula was estimated over a range of humeral orientations by palpating and digitizing bony landmarks on the scapula and then used to calculate correction factors that were weighted by humeral orientation. The scapular kinematics using these correction factors were compared with the kinematics measured via the bone pins during four arm movements in the volunteers: abduction, forward reaching, hand behind back, and horizontal adduction. The root-mean-square (rms) errors for the kinematics determined from skin markers without the skin correction factors ranged from 5.1 deg to 9.5 deg while the rms errors with the skin correction factors ranged from 1.4 deg to 3.0 deg. This technique appeared to perform well for different movements and could possibly be extended to other applications.

1.
Andriacchi
,
T. P.
, and
Alexander
,
E. J.
, 2000, “
Studies of human Locomotion: Past, Present and Future
,”
J. Biomech.
0021-9290,
33
(
10
), pp.
1217
1224
.
2.
Leardini
,
A.
,
Chiari
,
L.
,
Croce
,
U. D.
, and
Cappozzo
,
A.
, 2005, “
Human Movement Analysis Using Stereophotogrammetry. Part 3. Soft Tissue Artifact Assessment and Compensation
,”
Gait and Posture
0966-6362,
21
(
2
), pp.
212
225
.
3.
Houck
,
J.
,
Yack
,
H. J.
, and
Cuddeford
,
T.
, 2004, “
Validity and Comparisons of Tibiofemoral Orientations and Displacement Using a Femoral Tracking Device During Early to Mid Stance of Walking
,”
Gait and Posture
0966-6362,
19
(
1
), pp.
76
84
.
4.
Lafortune
,
M. A.
,
Cavanagh
,
P. R.
,
Sommer
,
H. J.
, 3rd
, and
Kalenak
,
A.
, 1992, “
Three-Dimensional Kinematics of the Human Knee During Walking
,”
J. Biomech.
0021-9290,
25
(
4
), pp.
347
357
.
5.
Manal
,
K.
,
McClay
,
I.
,
Richards
,
J.
,
Galinat
,
B.
, and
Stanhope
,
S.
, 2002, “
Knee Moment Profiles During Walking: Errors Due to Soft Tissue Movement of the Shank and the Influence of the Reference Coordinate System
,”
Gait and Posture
0966-6362,
15
(
1
), pp.
10
17
.
6.
Manal
,
K.
,
McClay
,
I.
,
Stanhope
,
S.
,
Richards
,
J.
, and
Galinat
,
B.
, 2000, “
Comparison of Surface Mounted Markers and Attachment Methods in Estimating Tibial Rotations During Walking: An In Vivo Study
,”
Gait and Posture
0966-6362,
11
(
1
), pp.
38
45
.
7.
Reinschmidt
,
C.
,
van den Bogert
,
A. J.
,
Nigg
,
B. M.
,
Lundberg
,
A.
, and
Murphy
,
N.
, 1997, “
Effect of Skin Movement on the Analysis of Skeletal Knee Joint Motion During Running
,”
J. Biomech.
0021-9290,
30
(
7
), pp.
729
732
.
8.
Cutti
,
A. G.
,
Cappello
,
A.
, and
Davalli
,
A.
, 2006, “
In Vivo Validation of a New Technique that Compensates for Soft Tissue Artefact in the Upper-Arm: Preliminary Results
,”
Clin. Biomech. (Bristol, Avon)
0268-0033,
21
, pp.
S13
S19
.
9.
Cuti
,
A. G.
,
Paolini
,
G.
,
Troncossi
,
M.
,
Cappello
,
A.
, and
Davalli
,
A.
, 2005, “
Soft Tissue Artefact Assessment in Humeral Axial Rotation
,”
Gait and Posture
0966-6362,
21
(
3
), pp.
341
349
.
10.
Roux
,
E.
,
Bouilland
,
S.
,
Godillon-Maquinghen
,
A. P.
, and
Bouttens
,
D.
, 2002, “
Evaluation of the Global Optimisation Method Within the Upper Limb Kinematics Analysis
,”
J. Biomech.
0021-9290,
35
(
9
), pp.
1279
1283
.
11.
Schmidt
,
R.
,
Disselhorst-Klug
,
C.
,
Silny
,
J.
, and
Rau
,
G.
, 1999, “
A Marker-Based Measurement Procedure for Unconstrained Wrist and Elbow Motions
,”
J. Biomech.
0021-9290,
32
(
6
), pp.
615
621
.
12.
Karduna
,
A. R.
,
McClure
,
P. W.
,
Michener
,
L. A.
, and
Sennett
,
B.
, 2001, “
Dynamic Measurements of Three-Dimensional Scapular Kinematics: A Validation Study
,”
ASME J. Biomech. Eng.
0148-0731,
123
(
2
), pp.
184
190
.
13.
Cappello
,
A.
,
Stagni
,
R.
,
Fantozzi
,
S.
, and
Leardini
,
A.
, 2005, “
Soft Tissue Artifact Compensation in Knee Kinematics by Double Anatomical Landmark Calibration: Performance of a Novel Method During Selected Motor Tasks
,”
IEEE Trans. Biomed. Eng.
0018-9294,
52
(
6
), pp.
992
998
.
14.
Karduna
,
A. R.
,
McClure
,
P. W.
, and
Michener
,
L. A.
, 2000, “
Scapular Kinematics: Effects of Altering the Euler Angle Sequence of Rotations
,”
J. Biomech.
0021-9290,
33
(
9
), pp.
1063
1068
.
15.
Wu
,
G.
,
van der Helm
,
F. C.
,
Veeger
,
H. E.
,
Makhsous
,
M.
,
Van Roy
,
P.
,
Anglin
,
C.
,
Nagels
,
J.
,
Karduna
,
A. R.
,
McQuade
,
K.
,
Wang
,
X.
,
Werner
,
F. W.
, and
Buchholz
,
B.
, 2005, “
ISB Recommendation on Definitions of Joint Coordinate Systems of Various Joints for the Reporting of Human Joint Motion–Part II: Shoulder, Elbow, Wrist and Hand
,”
J. Biomech.
0021-9290,
38
(
5
), pp.
981
992
.
16.
Soderkvist
,
I.
, and
Wedin
,
P. A.
, 1993, “
Determining the Movements of the Skeleton Using Well-Configured Markers
,”
J. Biomech.
0021-9290,
26
(
12
), pp.
1473
1477
.
17.
Cappello
,
A.
,
Cappozzo
,
A.
,
La Palombara
,
P. F.
,
Lucchetti
,
L.
, and
Leardini
,
A.
, 1997, “
Multiple Anatomical Landmark Calibration for Optimal Bone Pose Estimation
,”
Hum. Mov. Sci.
0167-9457,
16
, pp.
259
274
.
18.
Bourne
,
D.
, 2003,
Accuracy and Reliability of a New Method of Measuring Three-Dimensional Scapular Kinematics
,
University of British Columbia
,
Vancouver, BC, Canada
.
19.
Bourne
,
D.
,
Choo
,
A.
,
Regan
,
W.
,
MacIntyre
,
D.
, and
Oxland
,
T.
, 2009, “
Accuracy of Digitization of Bony Landmarks for Measuring Change in Scapular Attitude
,”
Proc. Inst. Mech. Eng. H
,
223
(
3
), pp.
349
361
.
20.
Fuller
,
J.
,
Liu
,
L. J.
,
Murphy
,
M. C.
, and
Mann
,
R. W.
, 1997,
A Comparison of Lower-Extremity Skeletal Kinematics Measured Using Skin- and Pin-Mounted Markers
, Vol.
16
(2–3),
Human Movement Science
, pp.
219
242
.
21.
Gregersen
,
G. G.
, and
Lucas
,
D. B.
, 1967, “
An In Vivo Study of the Axial Rotation of the Human Thoracolumbar Spine
,”
J. Bone Jt. Surg., Am. Vol.
0021-9355,
49
(
2
), pp.
247
262
.
22.
Gunzburg
,
R.
,
Hutton
,
W.
, and
Fraser
,
R.
, 1991, “
Axial Rotation of the Lumbar Spine and the Effect of Flexion. An In Vitro and In Vivo Biomechanical Study
,”
Spine
0362-2436,
16
(
1
), pp.
22
28
.
23.
Harryman
,
D. T.
, II
,
Sidles
,
J. A.
,
Harris
,
S. L.
, and
Matsen
,
F. A.
, III
, 1992, “
Laxity of the Normal Glenohumeral Joint: A Quantitative In Vivo Assessment
,”
J. Shoulder Elbow Surg.
1058-2746,
1
, pp.
66
76
.
24.
Koh
,
T. J.
,
Grabiner
,
M. D.
, and
Brems
,
J. J.
, 1998, “
Three-Dimensional In Vivo Kinematics of the Shoulder During Humeral Elevation
,”
J. Appl. Biomech.
1065-8483,
14
, pp.
312
326
.
25.
Lumsden
,
R. M.
, and
Morris
,
J. M.
, 1968, “
An In Vivo Study of Axial Rotation and Immoblization at the Lumbosacral Joint
,”
J. Bone Jt. Surg., Am. Vol.
0021-9355,
50
(
8
), pp.
1591
1602
.
26.
Neptune
,
R. R.
, and
Hull
,
M. L.
, 1995, “
Accuracy Assessment of Methods for Determining Hip Movement in Seated Cycling
,”
J. Biomech.
0021-9290,
28
(
4
), pp.
423
437
.
27.
Reinschmidt
,
C.
,
van den Bogert
,
A. J.
, and
Lundberg
,
A.
, 1997, “
Tibiofemoral and Tibiocalcaneal Motion During Walking: External vs. Skeletal Markers
,”
Gait and Posture
0966-6362,
6
, pp.
98
109
.
28.
Reinschmidt
,
C.
,
van den Bogert
,
A. J.
, and
Murphy
,
N.
, 1997, “
Tibiocalcaneal Motion During Running, Measured With External and Bone Markers
,”
Clinical Biomechanics
,
12
, pp.
8
16
.
29.
Steffen
,
T.
,
Rubin
,
R. K.
,
Baramki
,
H. G.
,
Antoniou
,
J.
,
Marchesi
,
D.
, and
Aebi
,
M.
, 1997, “
A New Technique for Measuring Lumbar Segmental Motion In Vivo. Method, Accuracy, and Preliminary Results
,”
Spine
0362-2436,
22
(
2
), pp.
156
166
.
30.
Johnson
,
G. R.
,
Stuart
,
P. R.
, and
Mitchell
,
S.
, 1993, “
A Method for the Measurement of Three-Dimensional Scapular Movement
,”
Clin. Biomech.
,
8
, pp.
269
273
.
You do not currently have access to this content.