Flow limitation in liquid-filled lungs is examined in intact rabbit experiments and a theoretical model. Flow limitation (“choked” flow) occurs when the expiratory flow reaches a maximum value and further increases in driving pressure do not increase the flow. In total liquid ventilation this is characterized by the sudden development of excessively negative airway pressures and airway collapse at the choke point. The occurrence of flow limitation limits the efficacy of total liquid ventilation by reducing the minute ventilation. In this paper we investigate the effects of liquid properties on flow limitation in liquid-filled lungs. It is found that the behavior of liquids with similar densities and viscosities can be quite different. The results of the theoretical model, which incorporates alveolar compliance and airway resistance, agrees qualitatively well with the experimental results. Lung compliance and airway resistance are shown to vary with the perfluorocarbon liquid used to fill the lungs. Surfactant is found to modify the interfacial tension between saline and perfluorocarbon, and surfactant activity at the interface of perfluorocarbon and the native aqueous lining of the lungs appears to induce hysteresis in pressure–volume curves for liquid-filled lungs. Ventilation with a liquid that results in low viscous resistance and high elastic recoil can reduce the amount of liquid remaining in the lungs when choke occurs, and, therefore, may be desirable for liquid ventilation.

1.
Kamm
,
R. D.
, and
Pedley
,
T. J.
, 1989, “
Flow in Collapsible Tubes: A Brief Review
,”
J. Biomech. Eng.
0148-0731,
111
, pp.
177
179
.
2.
Grotberg
,
J. B.
, 1994, “
Pulmonary Flow and Transport Phenomena
,” in
Annual Review of Fluid Mechanics
, edited by
J. L.
Lumley
,
M.
Van Dyke
, and
H. L.
Reed
(
Palo Alto: Annual Reviews, Inc
, Palo Alto, CA), pp.
529
571
.
3.
Dawson
,
S. V.
, and
Elliott
,
E. A.
, 1977, “
Wave-Speed Limitation on Expiratory Flow—A Unifying Concept
,”
J. Appl. Physiol.: Respir., Environ. Exercise Physiol.
0161-7567,
43
, pp.
498
515
.
4.
Dawson
,
S. V.
, and
Elliott
,
E. A.
, 1980, “
Use of the Choke Point in the Prediction of Flow Limitation in Elastic Tubes
,”
Fed. Proc.
0014-9446,
39
, pp.
2765
2770
.
5.
Shapiro
,
A. H.
, 1977, “
Steady Flow in Collapsible Tubes
,”
J. Biomech. Eng.
0148-0731,
99
, pp.
126
147
.
6.
Aljuri
,
N.
,
Freitag
,
L.
, and
Venegas
,
J. G.
, 1999, “
Modeling Expiratory Flow From Excised Tracheal Tube Laws
,”
J. Appl. Physiol.
8750-7587,
87
, pp.
1973
1980
.
7.
Elad
,
D.
,
Kamm
,
R. D.
, and
Shapiro
,
A. H.
, 1988, “
Mathematical Simulation of Forced Expiration
,”
J. Appl. Physiol.
8750-7587,
65
, pp.
14
25
.
8.
Elad
,
D.
,
Kamm
,
R. D.
, and
Shapiro
,
A. H.
, 1987, “
Choking Phenomena in a Lung-Like Model
,”
J. Biomech. Eng.
0148-0731,
109
, pp.
1
9
.
9.
Kimmel
,
E.
,
Kamm
,
R. D.
, and
Shapiro
,
A. H.
, 1988, “
Numerical-Solutions for Steady and Unsteady-Flow in a Model of the Pulmonary Airways
,”
J. Biomech. Eng.
0148-0731,
110
, pp.
292
299
.
10.
Polak
,
A. G.
, and
Lutchen
,
K. R.
, 2003, “
Computational Model For Forced Expiration From Asymmetric Normal Lungs
,”
Ann. Biomed. Eng.
0090-6964,
31
, pp.
891
907
.
11.
Polak
,
A G.
, 1998, “
A Forward Model For Maximum Expiration
,”
Comput. Biol. Med.
0010-4825,
28
, pp.
613
625
.
12.
Lambert
,
R. K.
, 1986, “
Analysis of Bronchial Mechanics and Density Dependence of Maximal Expiratory Flow
,”
J. Appl. Physiol.
8750-7587,
61
, pp.
138
149
.
13.
Lambert
,
R. K.
, 1987, “
Bronchial Mechanical-Properties and Maximal Expiratory Flows
,”
J. Appl. Physiol.
8750-7587,
62
, pp.
2426
2435
.
14.
Lambert
,
R. K.
, 1984, “
Sensitivity and Specificity of the Computational Model for Maximal Expiratory Flow
,”
J. Appl. Physiol.: Respir., Environ. Exercise Physiol.
0161-7567,
57
, pp.
958
970
.
15.
Lambert
,
R. K.
,
Wilson
,
T. A.
,
Hyatt
,
R. E.
, and
Rodarte
,
J. R.
, 1982, “
A Computational Model For Expiratory Flow
,”
J. Appl. Physiol.: Respir., Environ. Exercise Physiol.
0161-7567,
52
, pp.
44
56
.
16.
Staats
,
B. A.
,
Wilson
,
T. A.
,
Laifook
,
S. J.
,
Rodarte
,
J. R.
, and
Hyatt
,
R. E.
, 1980, “
Viscosity and Density Dependence During Maximal Flow in Man
,”
J. Appl. Physiol.: Respir., Environ. Exercise Physiol.
0161-7567,
48
, pp.
313
319
.
17.
Solway
,
J.
,
Fredberg
,
J. J.
,
Ingram
,
R. H.
,
Pedersen
,
O. F.
, and
Drazen
,
J. M.
, 1987, “
Interdependent Regional Lung Emptying During Forced Expiration—A Transistor Model
,”
J. Appl. Physiol.
8750-7587,
62
, pp.
2013
2025
.
18.
Topulos
,
G. P.
,
Nielan
,
G. J.
,
Glass
,
G. M.
, and
Fredberg
,
J. J.
, 1990, “
Interdependence of Regional Expiratory Flows Limits Alveolar Pressure Differences
,”
J. Appl. Physiol.
8750-7587,
69
, pp.
1413
1418
.
19.
Wilson
,
T. A.
,
Fredberg
,
J. J.
,
Rodarte
,
J. R.
, and
Hyatt
,
R. E.
, 1985, “
Interdependence of Regional Expiratory Flow
,”
J. Appl. Physiol.
8750-7587,
59
, pp.
1924
1928
.
20.
Schilder
,
D. P.
,
Fry
,
D. L.
, and
Roberts
,
A.
, 1963, “
Effect of Gas Density and Viscosity on Maximal Expiratory Flow–Volume Relationship
,”
J. Clin. Invest.
0021-9738,
42
, p.
1705
.
21.
Matsuzaki
,
Y.
, and
Fung
,
Y. C.
, 1979, “
Non-Linear Stability Analysis of a Two-Dimensional Model of an Elastic Tube Conveying a Compressible Flow
,”
Trans. ASME, J. Appl. Mech.
0021-8936,
46
, pp.
31
36
.
22.
Matsuzaki
,
Y.
,
Ikeda
,
T.
,
Kitagawa
,
T.
, and
Sakata
,
S.
, 1994, “
Analysis of Flow in a 2-Dimensional Collapsible Channel Using Universal Tube Law
,”
J. Biomech. Eng.
0148-0731,
116
, pp.
469
476
.
23.
Luo
,
X. Y.
, and
Pedley
,
T. J.
, 1995, “
A Numerical-Simulation of Steady Flow in a 2-D Collapsible Channel
,”
J. Fluids Struct.
0889-9746,
9
, pp.
149
174
.
24.
Luo
,
X. Y.
, and
Pedley
,
T. J.
, 1998, “
The Effects of Wall Inertia on Flow in a Two-Dimensional Collapsible Channel
,”
J. Fluid Mech.
0022-1120,
363
, pp.
253
280
.
25.
Heil
,
M.
, 1998, “
Stokes Flow in an Elastic Tube—A Large-Displacement Fluid Structure Interaction Problem
,”
Int. J. Numer. Methods Fluids
0271-2091,
28
, pp.
243
265
.
26.
Heil
,
M.
, 1997, “
Stokes Flow in Collapsible Tubes: Computation and Experiment
,”
J. Fluid Mech.
0022-1120,
353
, pp.
285
312
.
27.
Heil
,
M.
, and
Pedley
,
T. J.
, 1995, “
Large Axisymmetrical Deformation of a Cylindrical-Shell Conveying a Viscous-Flow
,”
J. Fluids Struct.
0889-9746,
9
, pp.
237
256
.
28.
Huang
,
L.
, 2001, “
Viscous Flutter of a Finite Elastic Membrane in Poiseuille Flow
,”
J. Fluids Struct.
0889-9746,
15
, pp.
1061
1088
.
29.
Grotberg
,
J. B.
, and
Reiss
,
E. L.
, 1984, “
Subsonic Flapping Flutter
,”
J. Sound Vib.
0022-460X,
92
, pp.
349
361
.
30.
Gavriely
,
N.
,
Kelly
,
K. B.
,
Grotberg
,
J. B.
, and
Loring
,
S. H.
, 1987, “
Forced Expiratory Wheezes are a Manifestation of Airway Flow Limitation
,”
J. Appl. Physiol.
8750-7587,
62
, pp.
2398
2403
.
31.
Gavriely
,
N.
,
Kelly
,
K. B.
,
Grotberg
,
J. B.
, and
Loring
,
S. H.
, 1989, “
Critical Pressures Required For Generation of Forced Expiratory Wheezes
,”
J. Appl. Physiol.
8750-7587,
66
, pp.
1136
1142
.
32.
Grotberg
,
J. B.
, and
Reiss
,
E. L.
, 1982, “
A Subsonic Flutter Anomaly
,”
J. Sound Vib.
0022-460X,
80
, pp.
444
446
.
33.
Hamosh
,
P. O.
, and
Luchsinger
,
P. C.
, 1968, “
Maximum Expiratory Flow in Isolated Liquid-Filled Lungs
,”
J. Appl. Physiol.
0021-8987,
25
, pp.
485
488
.
34.
Schoenfisch
,
W. H.
, and
Kylstra
,
J. A.
, 1973, “
Maximum Expiratory Flow and Estimated CO2 Elimination in Liquid-Ventilated Dogs’ Lungs
,”
J. Appl. Physiol.
0021-8987,
35
, pp.
117
121
.
35.
Koen
,
P. A.
,
Wolfson
,
M. R.
, and
Shaffer
,
T. H.
, 1988, “
Fluorocarbon Ventilation: Maximal Expiratory Flows and CO2 Elimination
,”
Pediatr. Res.
0031-3998,
24
, pp.
291
296
.
36.
Bull
,
J. L.
,
Tredici
,
S.
,
Komori
,
E.
,
Brant
,
D. O.
,
Grotberg
,
J. B.
, and
Hirschl
,
R. B.
, 2004, “
Distribution Dynamics of Perfluorocarbon Delivery to the Lungs: An Intact Rabbit Model
,”
J. Appl. Physiol.
8750-7587,
96
, pp.
1633
1642
.
37.
Hirschl
,
R. B.
,
Tooley
,
R.
,
Parent
,
A.
,
Johnson
,
K.
, and
Bartlett
,
R. H.
, 1996, “
Evaluation of Gas Exchange, Pulmonary Compliance, and Lung Injury During Total and Partial Liquid Ventilation in the Acute Respiratory Ristress Syndrome
,”
Crit. Care Med.
0090-3493,
24
, pp.
1001
1008
.
38.
Tredici
,
S.
,
Komori
,
E.
,
Funakubo
,
A.
,
Brant
,
D. O.
,
Bull
,
J. L.
et al.
, 2004, “
A Prototype of a Liquid Ventilator Using a Novel Hollow-Fiber Oxygenator in a Rabbit Model
,”
Crit. Care Med.
0090-3493,
32
, pp.
2104
2109
.
39.
Greenspan
,
J. S.
,
Wolfson
,
M. R.
,
Rubenstein
,
S. D.
, and
Shaffer
,
T. H.
, 1990, “
Liquid Ventilation of Human Preterm Neonates
,”
J. Pediatr. (St. Louis)
0022-3476,
117
, pp.
106
111
.
40.
Hirschl
,
R. B.
,
Pranikoff
,
T.
,
Gauger
,
P.
,
Schreiner
,
R. J.
,
Dechert
,
R.
, and
Bartlett
,
R. H.
, 1995, “
Liquid Ventilation in Adults, Children, and Full-Term Neonates: Preliminary Report
,”
Lancet
0140-6736,
346
, pp.
1201
1202
.
41.
Hirschl
,
R. B.
,
Conrad
,
S.
,
Kaiser
,
R.
,
Zwischenberger
,
J. B.
,
Bartlett
,
R. B.
, et al.
, 1998, “
Partial Liquid Ventilation in Adult Patients With ARDS: A Multicenter Phase I–II Trial
,”
Ann. Surg.
0003-4932,
228
, pp.
692
700
.
42.
Baba
,
Y.
,
Brant
,
D. O.
,
Brah
,
S. S.
,
Grotberg
,
J. B.
,
Bartlett
,
R. H.
, and
Hirschl
,
R. B.
, 2004, “
Assessment of the Development of Choked Flow During Total Liquid Ventilation
,”
Crit. Care Med.
0090-3493,
32
, pp.
201
208
.
43.
Foley
,
D. S.
,
Brah
,
R.
,
Bull
,
J. L.
,
Brant
,
D. O.
,
Grotberg
,
J. B.
, and
Hirschl
,
R. B.
, 2004, “
Total Liquid Ventilation: Dynamic Airway Pressure and the Development of Expiratory Flow Limitation
,”
ASAIO J.
1058-2916,
50
, pp.
485
490
.
44.
Meinhardt
,
J. P.
,
Ashton
,
B. A.
,
Annich
,
G. M.
,
Quintel
,
M.
, and
Hirschl
,
R. B.
, 2003, “
The Dependency of Expiratory Airway Collapse on Pump System and Flow Rate in Liquid Ventilated Rabbits
,”
Eur. J. Med. Res.
0949-2321,
8
, pp.
212
220
.
45.
Munson
,
B. R.
,
Young
,
D. F.
, and
Okiishi
,
T. H.
, 2002,
Fundamentals of Fluid Mechanics
(
Wiley
, New York).
46.
Adamson
,
A. W.
, 1990,
Physical Chemistry of Surfaces
(
Wiley-Interscience
, New York).
47.
Bull
,
J. L.
,
Nelson
,
L. K.
,
Walsh
,
J. T.
,
Glucksberg
,
M. R.
,
Schurch
,
S.
, and
Grotberg
,
J. B.
, 1999, “
Surfactant-Spreading and Surface-Compression Disturbance on a Thin Viscous Film
,”
J. Biomech. Eng.
0148-0731,
121
, pp.
89
98
.
48.
Bull
,
J. L.
, and
Grotberg
,
J. B.
, 2003, “
Surfactant Spreading on Thin Viscous Films: Film Thickness Evolution and Periodic Wall Stretch
,”
Exp. Fluids
0723-4864,
34
, pp.
1
15
.
49.
Schurch
,
S.
, 1993, “
Surface Tension Properties of Surfactant
,”
Clin. Perinatol.
0095-5108,
20
, pp.
669
682
.
50.
Schurch
,
S.
,
Bachofen
,
H.
,
Goerke
,
J.
, and
Possmayer
,
F.
, 1989, “
A Captive Bubble Method Reproduces the In Situ Behavior of Lung Surfactant Monolayers
,”
J. Appl. Physiol.
8750-7587,
67
, pp.
2389
2396
.
51.
Miserocchi
,
G.
,
Kelly
,
S.
, and
Negrini
,
D.
, 1988, “
Pleural and Extrapleural Interstitial Liquid Pressure Measured by Cannulas and Micropipettes
,”
J. Appl. Physiol.
8750-7587,
65
, pp.
555
562
.
52.
Miserocchi
,
G.
,
Negrini
,
D.
, and
Gonano
,
C.
, 1990, “
Direct Measurement of Interstitial Pulmonary Pressure in In Situ Lung With Intact Pleural Space
,”
J. Appl. Physiol.
8750-7587,
69
, pp.
2168
2174
.
53.
Von Neergaard
,
K.
, 1928, “
Auffasungen Uber Einen Grundbegriff der Atemmechanik Die Retractionskraft der Lunge, Abhangig von der Oberflachenspannung in Den Alveolen
,”
Z. Gesamte Exp. Med.
0044-2534,
66
, pp.
373
394
.
54.
TarczyHornock
,
P.
,
Hildebrandt
,
J.
,
Mates
,
E. A.
,
Standaert
,
T. A.
,
Lamm
,
W. J. E.
et al.
, 1996, “
Effects of Exogenous Surfactant on Lung Pressure–Volume Characteristics During Liquid Ventilation
,”
J. Appl. Physiol.
8750-7587,
80
, p.
1764
.
55.
Briscoe
,
W. A.
, and
Dubois
,
A. B.
, 1958, “
Relationship Between Airway Resistance, Airway Conductance and Lung Volume in Subjects of Different Age and Body Size
,”
J. Clin. Invest.
0021-9738,
37
, pp.
1279
1285
.
56.
West
,
J. B.
, 1990,
Respiratory Physiology—The Essentials
(
Williams & Wilkins
, Baltimore, MD).
You do not currently have access to this content.