A tapered interference fit provides a mechanically reliable retention mechanism for the implant-abutment interface in a dental implant. Understanding the mechanical properties of the tapered interface with or without a screw at the bottom has been the subject of a considerable amount of studies involving experiments and finite element (FE) analysis. In this paper, approximate closed-form formulas are developed to analyze the mechanics of a tapered interference fit. In particular, the insertion force, the efficiency, defined as the ratio of the pull-out force to insertion force, and the critical insertion depth, which causes the onset of plastic deformation, are analyzed. It is shown that the insertion force is a function of the taper angle, the contact length, the inner and outer radii of the implant, the static and the kinetic coefficients of friction, and the elastic modulii of the implant/abutment materials. The efficiency of the tapered interference fit, which is defined as the ratio of the pull-out force to insertion force, is found to be greater than one, for taper angles that are less than 6 deg when the friction coefficient is 0.3. A safe range of insertion forces has been shown to exist. The lower end of this range depends on the maximum pull-out force that may occur due to occlusion in the multiple tooth restorations and the efficiency of the system; and the upper end of this range depends on the plastic deformation of the abutment and the implant due to interference fit. It has been shown that using a small taper angle and a long contact length widens the safe range of insertion forces.

1.
Scacchi
,
M.
,
Merz
,
B. R.
, and
Scha¨r
,
A. R.
,
2000
, “
The development of the ITI Dental Implant System
,”
Clin. Oral Implants Res.
,
11
, pp.
22
32
.
2.
Brunski
,
J. B.
,
1999
, “
In vivo bone response to biomechanical loading at the bone/dental-implant interface
,”
Adv. Dent. Res.
,
13
, pp.
99
119
.
3.
Anonymous
,
2001
, “
U.S. Markets for Dental Implants 2001: Executive Summary
,”
Implant Dent.
,
10
(
4
), pp.
234
237
.
4.
Geng
,
J.
,
Tan
,
K.
, and
Liu
,
G.
,
2001
, “
Application of finite element analysis in implant dentistry: A review of the literature
,”
J. Prosthet. Dent.
,
85
, pp.
585
598
.
5.
Schwarz
,
M. S.
,
2000
, “
Mechanical complications of dental implants
,”
Clin. Oral Implants Res.
,
11
, pp.
156
158
.
6.
Martin
,
W. C.
,
Woody
,
R. D.
,
Miller
,
B. H.
, and
Miller
,
A. W.
,
2001
, “
Implant abutment screw rotations and preloads for four different screw materials and surfaces
,”
J. Prosthet. Dent.
,
86
, pp.
24
32
.
7.
Merz
,
B. R.
,
Hunenbart
,
S.
, and
Belser
,
U. C.
,
2000
, “
Mechanics of the implant-abutment connection: An 8-degree taper compared to a butt joint connection
,”
Int. J. Oral Maxillofac Implants
,
15
, pp.
519
526
.
8.
Levine
,
R. A.
,
Clem
,
D. S.
,
Wilson
, Jr.,
T. G.
,
Higginbottom
,
F.
, and
Solnit
,
G.
,
1997
, “
Multicenter retrospective analysis of the ITI implant system used for single-tooth replacements: Preliminary results at 6 or more months of loading
,”
Int. J. Oral Maxillofac Implants
,
12
, pp.
237
242
.
9.
Levine
,
R. A.
,
Clem
,
D. S.
,
Wilson
, Jr.,
T. G.
,
Higginbottom
,
F.
, and
Saunders
,
S. L.
,
1999
, “
A multicenter retrospective analysis of the ITI implant system used for single-tooth replacements: Results of loading for 2 or more years
,”
Int. J. Oral Maxillofac Implants
,
14
, pp.
516
520
.
10.
Bozkaya, D., and Mu¨ftu¨, S., 2004, “Mechanics of the Taper Integrated Screwed-In (TIS) Abutments Used Dental Implants,” accepted for publication J. Biomech.
11.
Warren Bidez, M. and Misch, C. E., 1999, “Clinical biomechanics in implant dentistry,” in Implant Dentistry, second edition, ed. Misch C. E., Mosby, St. Louis, MO, pp. 303–316.
12.
Norton
,
M. R.
,
1999
, “
Assessment of cold welding of the internal conical interface of two commercially available implant systems
,”
J. Prosthet. Dent.
,
81
, pp.
159
166
.
13.
Sutter
,
F.
,
Weber
,
H. P.
,
Sorensen
,
J.
, and
Belser
,
U.
,
1993
, “
The new restorative concept of the ITI Dental Implant System: Design and engineering
,”
Int. J. Periodontics Restorative Dent.
,
13
, pp.
409
431
.
14.
Squier
,
R. S.
,
Psoter
,
W. J.
, and
Taylor
,
T. D.
,
2002
, “
Removal torques of conical, tapered implant abutments: The effects of anodization and reduction of surface area
,”
Int. J. Oral Maxillofac Implants
,
17
, pp.
24
27
.
15.
Mu¨ftu¨
,
A.
, and
Chapman
,
R. J.
,
1998
, “
Replacing posterior teeth with freestanding implants: four year prosthodontic results of a prospective study
,”
J. Am. Dent. Assoc.
,
129
, pp.
1097
1102
.
16.
O’Callaghan, J., Goddard, T., Birichi, R., Jagodnik, J. J., and Westbrook, S., 2002, “Abutment hammering tool for dental implants,” American Society of Mechanical Engineers, IMECE-2002 Proceedings Vol. 2, Nov. 11–16, 2002, Paper No. DE-25112.
17.
Bozkaya
,
D.
, and
Mu¨ftu¨
,
S.
,
2003
, “
Mechanics of the tapered interference fit in dental implants
,”
J. Biomech.
,
36
(
11
), pp.
1649
1658
.
18.
Shigley, J. E. and Mischke, C. R., 2001, Mechanical Engineering Design, McGraw-Hill, Boston, MA.
19.
Gamer
,
U.
, and
Mu¨ftu¨
,
S.
,
1990
, “
On the elastic-plastic shrink fit with supercritical interference
,”
ZAMM
,
70
(
11
), pp.
501
507
.
20.
Rabinowicz, E., 1995, Friction and Wear of Materials, John Wiley and Sons, NY.
21.
Adams
,
G. G.
,
Mu¨ftu¨
,
S.
, and
Mohd Azar
,
N.
,
2003
, “
A Scale-Dependent Model for Multi-Asperity Model for Contact and Friction
,”
J. Tribol.
,
125
, pp.
700
708
.
22.
Pennock
,
A. T.
,
Schmidt
,
A. H.
, and
Bourgeault
,
C. A.
,
2002
, “
Morse-type tapers: Factors that may influence taper strength during total hip arthroplasty
,”
J. Arthroplasty
,
17
, pp.
773
778
.
You do not currently have access to this content.