Recently, highly crosslinked UHMWPE components have been promoted for their high abrasive wear resistance over conventional UHMWPE (PE) in total joint replacement (TJR) prostheses to minimize osteolysis and consequent implant loosening. This study was aimed at investigating the role of friction gradients induced by localized coefficients of friction at both crystalline and amorphous nanoregions in PE, and crystalline and crosslinked nanoregions in crosslinked UHMWPE (XPE), in submicron wear debris generation. An abrasive wear study performed on both XPE and PE using atomic force microscopy (AFM) illustrated that the onset of plastic deformation for XPE occurred at a normal load that was approximately 3 times higher when compared to PE. Coefficients of friction μd of 0.2, 0.35, and 0.61, experimentally derived using AFM, were used as representative μd for crystalline, amorphous, and crosslinked nanoregions, respectively, in a numerical Hertzian model. An increase in μ (0.2±0.02, 0.35±0.01 and 0.6±0.04) was observed with a decrease in crystallinity and storage modulus at 22°C. Using the Hertzian contact model, it was observed that variability in friction between nanoregions contributed to higher magnitude stresses for XPE (0.2 to 0.61; maximum σeff=2.8) compared to PE (0.2 to 0.35; maximum σeff=1.1) over a negligible thickness of the interfacial zone (IZ) between nanoregions. The experimentally observed increase in abrasive wear resistance of XPE could be attributed to an increase in the thickness of the interfacial zone between nanoregions with μ changing gradually from crystalline to crosslinked nanoregions, a situation that may not be observed with PE. This would cause a decrease in the friction gradient and resulting stresses thereby agreeing with the observed experimental higher abrasive wear resistance for XPE. However, in both PE and XPE, the presence of stress concentrations over a period of time could lead to irreversible damage of the material eventually generating submicron wear debris. Hence, semicrystalline, inhomogenous UHMWPE with several nanoregions (amorphous and crystalline) would be at a disadvantage for bearing application in terms of abrasive wear resistance compared to UHMWPE with relatively lower number of nanoregions and crosslinked nanoregions.

1.
Li
,
S.
, and
Burstein
,
A. H.
,
1994
,
J. Bone Jt. Surg.
,
76-A
(
7
),
1080
1090
.
2.
Kurtz
,
S. M.
,
Muratoglu
,
O. K.
,
Evans
,
M.
, and
Edidin
,
A. A.
,
1999
,
Biomaterials
20
,
1659
1688
.
3.
Ho, S. P., Joseph, P. F., Drews, M. J., and LaBerge, M., 2002, Biomaterials, April, 23–27, Tampa, Florida.
4.
St. John, K. R., Poggie, R. A., Zardiackas, L. D., and Afflitto, R. M., 1999, in: J. A. Disegi, R. L. Kennedy, and R. Pilliar, (eds.), Cobalt-Base Alloys for Biomedical Applications, ASTM-STP 1365, American Standards for Testing Materials, West Conshohocken, PA, pg. 145–155.
5.
Jacob
,
R. J.
,
Pienkowski
,
D.
,
Hoglin
,
D. P.
,
Saum
,
K. A.
,
Kaufer
,
H.
, and
Nicholls
,
P. J.
,
1997
,
J. Biomed. Mater. Res.
,
37
(
4
),
489
496
.
6.
Fisher
,
J.
,
Bell
,
J.
,
Barbour
,
P. S. M.
,
Tipper
,
J. L.
,
Matthews
,
J. B.
,
Besong
,
A. A.
,
Stone
,
M. H.
, and
Ingham
,
E.
,
2001
,
J. Eng. Medicine
,
215
(
H2
),
127
132
.
7.
Wang
,
A.
,
Essner
,
A.
, and
Klein
,
R.
,
2001
,
J. Eng. Medicine
,
215
(
H2
),
133
139
.
8.
Bartel
,
D. L.
,
Rawlinson
,
J. J.
,
Burstein
,
A. H.
,
Ranawat
,
C. S.
, and
Flynn
,
W. F.
,
1995
,
Clin. Orthop.
,
317
,
76
82
.
9.
Wang, A., Edwards, B., Yau, S., Polineni, V. K., Essner, A., Klein, R., Sun, D. C., Stark, C., and Dumbleton, J. H., 1998, in: R. A. Gsell, H. L. Stein, and J. J. Ploskonlea, (eds.), Characterization and Properties of UHMWPE, ASTM STP 1307, American Standards for Testing Materials, West Conschohocken, PA, pg. 56–76.
10.
Myshkin
,
N. K.
,
Petrokovets
,
M. I.
, and
Chizhik
,
S. A.
,
1998
,
Tribol. Int.
,
31
(1–3),
79
86
.
11.
Bowden, F. P., and Tabor, D., 1973, Friction—An Introduction to Tribology, Anchor Press/Doubleday, New York, pg. 54–55, 65.
12.
Suh, N. P., 1986, Tribophysics, Prentice-Hall, Inc., New Jersey, pg. 128–129.
13.
Joseph, P. F., Flood, L., Pullela-Ho, S., and LaBerge, M., 1999, Transactions of the 24th Society for Biomaterials, Providence, RI, pg. 190.
14.
Fujii T., Takahara T., and Kajiyama, T., 2000, ACS Chemical Symposium Series 741, 337–345.
15.
Carpick
,
R. W.
, and
Salmeron
,
M.
,
1997
,
Chem. Rev. (Washington, D.C.)
,
97
,
1163
1194
.
16.
Oulevey, F., Gourdon, D., Dupas, E., Liley, M., Duschl, C., Kulik, A. J., Gremaud, G., and Burnham, N. A., 1998, 118–123; ACS Symposium Series 741, edited by Vladimir V. Tsukruk and Kathryn J. Wahl.
17.
Leclera, Ph., Lazzaroni, R., Gubbels, F., De Vos, M., Deltour, R., Jerome, R., and Bredas, J. L., 1998, American Chemical Society, 129–139.
18.
Ho
,
S. P.
,
Carpick
,
R.
,
Boland
,
T.
, and
LaBerge
,
M.
,
2002
,
Wear
,
253
(
11–12
),
1145
55
.
19.
Bajaria, S. H., and Bellare, A., 1998, Medical Plastics and Biomaterials Magazine, March, pg. 40.
20.
Kurtz
,
S. M.
,
Villarraga
,
M. L.
,
Herr
,
M. P.
,
Bergstrom
,
J. S.
,
Rimnac
,
C. M.
, and
Edidin
,
A. A.
,
2002
,
Biomaterials
,
23
,
3681
3697
.
21.
Wang, M., Ph.D. 2002, Dissertation, Clemson University, Clemson, South Carolina, December.
22.
Wunderlich
,
B.
, and
Cormier
,
C. M.
,
1967
,
J. Polym. Sci.
,
5
,
A2
,
987
987
.
23.
Ho, S. P., Riester, L., Drews, M., and LaBerge, M., 2002, Proceedings Institution of Mechanical Engineers, 216[H2], 123–133.
24.
Ogeltree
,
F. D.
,
Carpick
,
R. W.
, and
Salmeron
,
M.
,
1996
,
Rev. Sci. Instrum.
,
67
(
9
),
3298
3306
.
25.
Hutter
,
J. L.
, and
Bechhoefer
,
J.
,
1993
,
Rev. Sci. Instrum.
,
64
(
7
),
1868
1878
.
26.
Boresi, A. P., Schmidt, R. J., and Sidebottom, O. M., 1993, Advanced Mechanics of Materials, Fifth Edition, John Wiley & Sons, Inc., New York, pg. 560–561.
27.
Premnath
,
V.
,
Harris
,
W. H.
,
Jasty
,
M.
, and
Merrill
,
E. W.
,
1996
,
Biomaterials
,
17
(
18
),
1741
1753
.
You do not currently have access to this content.