Mechanical properties of a polyacrylamide gel with reversible DNA crosslinks are presented. In this system, three DNA strands replace traditional chemical crosslinkers. In contrast to thermoset chemically crosslinked polyacrylamide, the new hydrogel is thermoreversible; crosslink dissociation without the addition of heat is also feasible by introducing a specific removal DNA strand. This hydrogel is characterized by a critical crosslink concentration at which gelation occurs. Below the critical point, a characteristic temperature exists at which a transition in viscosity is observed. Both temperature-dependent viscosity and elastic modulus of the material are functions of crosslink density.
Issue Section:
Technical Papers
Keywords:
biomechanics,
molecular biophysics,
DNA,
viscosity,
elastic moduli,
density,
polymer gels,
dissociation
1.
Hunkeler, D., and Hamielic, A. E., 1991, Water-Soluble Polymers: Synthesis, Solution Properties, and Applications, American Chemical Society, Washington, DC, pp. 82–104.
2.
Billmeyer, F. W., Jr., 1984, Textbook of Polymer Science, John Wiley & Sons, New York.
3.
Panikkar
, B.
, Hari
, P. R.
, and Sharma
, C. P.
, 1997
, “Modified Polyacrylamide Microspheres as Immunosorbent
,” Artif. Cells Blood Substit Immobil Biotechnol.
, 25
(6
), pp. 541
–550
.4.
Rieben
, R.
, Korchagina
, E. Y.
, von Allmen
, E.
, Hovinga
, J. K.
, Lammle
, B.
, Jungi
, T. W.
, Bovin
, N. V.
, and Nydegger
, U. E.
, 1995
, “In Vitro Evaluation of the Efficacy and Biocompatibility of New, Synthetic Abo Immunoabsorbents
,” Transplantation
, 60
(5
), pp. 425
–430
.5.
Grigoryan, A. S., Volozhin, A. I., Ahmar, N. A., and Titov, M. N., 1998, “Experimental and Morphological Study of Biomedical Efficacy of Two Variants of Composites Based on Polyacrylamide Gel and Hydroxyapatite Used for Repair of Bone Defects,” Stomatology,4.
6.
Gelfi
, C.
, and Righetti
, P. G.
, 1981
, “Polymerization Kinetics of Polyacrylamide Gels I. Effect of Different Cross-Linkers
,” Electrophoresis
, 2
, pp. 213
–219
.7.
Patras
, G.
, Qiao
, G. G.
, and Solomon
, D. H.
, 2000
, “Characterization of the Pore Structure of Aqueous Three-Dimensional Polyacrylamide Gels With a Novel Cross-Linker
,” Electrophoresis
, 21
(17
), pp. 3843
–3850
.8.
Sperling, L. H., 2001, Introduction to Physical Polymer Science, John Wiley & Sons, New York.
9.
Mirkin
, C. A.
, Letsinger
, R. L.
, Mucic
, R. C.
, and Storhoff
, J. J.
, 1996
, “A DNA-Based Method for Rationally Assembling Nanoparticles Into Macroscopic Materials
,” Nature (London)
, 382
(6592
), pp. 607
–609
.10.
Lin, D. C., Yurke, B., Langrana, N. A., and Mills, Jr., A. P., 2002, “A Polyacrylamide Gel With Reversible DNA Crosslinks,” Advances in Bioengineering, ASME,BED-53.
11.
Middleton, J. C., Cummins, D. F., and McCormick, C. L., 1991, Water-Soluble Polymers: Synthesis, Solution Properties, and Applications, American Chemical Society, Washington, DC, pp. 338–348.
12.
de Gennes, P. G., 1979, Scaling Concepts in Polymer Physics, Cornell University Press, Ithaca, NY.
13.
Deaton
, R.
, Murphy
, R. C.
, Rose
, J. A.
, Franceschetti
, D. R.
, and Stevens
, Jr., S. E.
, 1998
, “Reliability and Efficiency of a DNA-Based Computation
,” Phys. Rev. Lett.
, 80
, pp. 417
–420
.14.
Sambrook, J., Fritsch, E. F., and Maniatis, T., 1989, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory Press, Plainview, N.Y.
15.
Benguigui
, L.
, and Boue
, F.
, 1999
, “Homogeneous and Inhomogeneous Polyacrylamide Gels as Observed by Small Angle Neutron Scattering: A Connection With Elastic Properties
,” Eur. Biophys. J.
, 11
, pp. 439
–444
.16.
Lin, D. C., Langrana, N. A., and Yurke, B., 2001, “Elastic Properties of Polyacrylamide Hydrogel: A Report Submitted to the New Jersey Center for Biomaterials,” Rutgers University, Piscataway, NJ.
17.
Hayashi, T., 1993, Biomedical Applications of Polymeric Materials, CRC Press, Boca Raton, pp. 17–51.
18.
Barber, J. R., 1992, Elasticity, Kluwer Academic Publishers, Dordrecht.
Copyright © 2004
by ASME
You do not currently have access to this content.