Helical flows have been observed in the ascending aorta in vivo, and geometric curvature has been suggested to be a major contributing factor. We employed magnetic resonance imaging (MRI) and velocity mapping to develop a computational model to examine the effects of curvature and also wall compliance and movement upon flow patterns. In the computational model, MRI-derived geometry and velocities were imposed as boundary conditions, which included both radial expansion-contraction and translational motion of the wall. The computed results were in agreement with the MR data only when full wall motion was included in the model, suggesting that the flow patterns observed in the ascending aorta arise not only from geometric curvature of the arch but also from the motion of the aorta resulting from its attachment to the beating heart.

1.
Stein
,
P. D.
,
Sabbah
,
H. N.
, and
Anbe
,
D. T.
,
1979
, “
Comparison of Disturbances of Flow in the Main Pulmonary Artery and Ascending Aorta of Man
,”
Biorheology
,
16
, pp.
357
362
.
2.
Klipstein
,
R. H.
,
Firmin
,
D. N.
,
Underwood
,
S. R.
,
Rees
,
R. S.
, and
Longmore
,
D. B.
,
1987
, “
Blood Flow Patterns in the Human Aorta Studied by Magnetic Resonance
,”
Br. Heart J.
,
58
(
4
), pp.
316
323
.
3.
Segadal
,
L.
, and
Matre
,
K.
,
1987
, “
Blood Velocity Distribution in the Human Ascending Aorta
,”
Circulation
,
77
, pp.
90
100
.
4.
Frazin
,
L. J.
,
Lanza
,
G.
,
Vonesh
,
M.
,
Khasho
,
F.
,
Spitzzeri
,
C.
,
McGee
,
S.
,
Mehlmann
,
D.
,
Chandran
,
K. B.
,
Talano
,
J.
, and
McPherson
,
D.
,
1990
, “
Functional Chiral Asymmetry in the Descending Thoracic Aorta
,”
Circulation
,
82
, pp.
1985
1994
.
5.
Kilner
,
P. J.
,
Yang
,
G. Z.
,
Mohiaddin
,
R. H.
,
Firmin
,
D. N.
, and
Longmore
,
D. B.
,
1993
, “
Helical and Retrograde Secondary Flow Patterns in the Aortic Arch Studied by Three-Dimensional Magnetic Resonance Velocity Mapping
,”
Circulation
,
88
, pp.
2235
2247
.
6.
Bogren
,
H. G.
, and
Buonocore
,
M. H.
,
1999
, “
4D Magnetic ResonanceVelocity Mapping of Blood Flow Patterns in the Aorta in Young vs. Elderly Normal Subjects
,”
J. Magn. Reson.
,
10
, pp.
861
869
.
7.
Dean
,
W. R.
,
1928
, “
The Streamline Motion of Fluid in a Curved Pipe
,”
Philos. Mag.
,
5
, pp.
673
695
.
8.
Caro
,
C. G.
,
Doorly
,
D. J.
,
Tarnawski
,
M.
,
Scott
,
K. T.
,
Long
,
Q.
, and
Dumoulin
,
C. L.
,
1996
, “
Non-Planar Curvature and Branching of Arteries and Non-Planar-Type of Flow
,”
Proc. R. Soc. London
,
452
, pp.
185
197
.
9.
Zabielski
,
L.
, and
Mestel
,
A. J.
,
1998
, “
Steady Flow in a Helically Symmetric Pipe
,”
J. Fluid Mech.
,
370
, pp.
297
320
.
10.
Zabielski
,
L.
, and
Mestel
,
A. J.
,
1998
, “
Unsteady Flow in a Helically Symmetric Pipe
,”
J. Fluid Mech.
,
370
, pp.
321
345
.
11.
Liu
,
H.
,
2000
, “
Computation of the Vortical Flow in Human Aorta
,”
ASME-BED Advances in Bioengineering
,
48
, pp.
103
104
.
12.
Nichols, W. W., and O’Rourke, M. F., 1998, McDonald’s Blood Flow in Arteries: Theoretical, Experimental and Clinical Principles, Edward Arnold, pp. 51.
13.
Myers
,
J. G.
,
Moore
,
J. A.
,
Ojha
,
M.
,
Johnston
,
K. W.
, and
Ethier
,
C. R.
,
2001
, “
Factors Influencing Blood Flow Patterns in the Human Right Coronary Artery
,”
Ann. Biomed. Eng.
,
29
, pp.
109
120
.
You do not currently have access to this content.