The study aimed to test the hypothesis that the restraining role of the anterior cruciate ligament (ACL) of the knee is significant during the activities of normal walking and stair ascent. The role of the ACL was determined from the effect of ACL excision on tibiofemoral displacement patterns measured in vitro for fresh-frozen knee specimens subjected to simulated knee kinetics of walking (n=12) and stair ascent (n=7). The knee kinetics were simulated using a newly developed dynamic simulator able to replicate the sagittal-plane knee kinetics with reasonable accuracy while ensuring unconstrained tibiofemoral kinematics. The displacements were measured using a calibrated six degree-of-freedom electromechanical goniometer. For the simulation of the walking cycle, two types of knee flexion/extension moment patterns were used: the more common “biphasic” pattern, and an extensor muscle force intensive pattern. For both of these patterns, the restraining role of the ACL to tibial anterior translation was found to be significant throughout the stance phase and in the terminal swing phase, when the knee angle was in the range of 4° to 30°. The effect of ACL excision was an increase in tibial anterior translation by 4 mm to 5 mm. For the stair ascent cycle, however, the restraining role of the ACL was significant only during the terminal stance phase, and not during the initial and middle segments of the phase. Although, in these segments, the knee moments were comparable to that in walking, the knee angle was in the range of 60° to 70°. These results have been shown to be consistent with available data on knee mechanics and ACL function measured under static loading conditions.

1.
Fukubayashi
,
B.
,
Torzilli
,
P. A.
,
Sherman
,
M. F.
, and
Warren
,
R. F.
,
1982
, “
An In Vitro Biomechanical Evaluation of Anterior-Posterior Motion of the Knee
,”
J. Bone Jt. Surg.
,
64-A
, pp.
258
264
.
2.
Hseih
,
H.
, and
Walker
,
P. S.
,
1976
, “
Stabilizing Mechanisms of the Loaded and Unloaded Knee Joint
,”
J. Bone Jt. Surg.
,
58-A
, pp.
87
93
.
3.
Markolf
,
K. L.
,
Mensch
,
J. S.
, and
Amstutz
,
H. C.
,
1976
, “
Stiffness and Laxity of the Knee-the Contribution of the Supporting Structures
,”
J. Bone Jt. Surg.
,
58-A
, pp.
583
593
.
4.
Butler
,
D. L.
,
Noyes
,
F. R.
, and
Grood
,
E. S.
,
1980
, “
Ligamentous Restraints to Anterior-Posterior Drawer in the Human Knee
,”
J. Bone Jt. Surg.
,
62-A
, pp.
259
270
.
5.
Piziali
,
R. L.
,
Seering
,
W. P.
,
Nagels
,
D. A.
, and
Schurman
,
D. J.
,
1980
, “
The Function of the Primary Ligaments of the Knee in Anterior-Posterior and Medial-Lateral Motions
,”
J. Biomech.
,
13
, pp.
777
784
.
6.
Lewis
,
J. L.
,
Lew
,
W. D.
,
Hill
,
J. A.
,
Ohland
,
K. J.
,
Kirstukas
,
S.
, and
Hunter
,
R. E.
,
1989
, “
Knee Joint Motion and Ligament Forces Before and After ACL Reconstruction
,”
ASME J. Biomech. Eng.
,
3
, pp.
97
106
.
7.
Livesay
,
G. A.
,
Fujie
,
H.
,
Kashiwaguchi
,
S.
,
Morrow
,
D. A.
,
Fu
,
F. H.
, and
Woo
,
S. L-Y.
,
1995
, “
Determination of the In Situ Forces and Force Distribution within the Human Anterior Cruciate Ligament
,”
Ann. Biomed. Eng.
,
23
, pp.
467
474
.
8.
Markolf
,
K. L.
,
Gorek
,
J. F.
,
Kabo
,
J. M.
,
Shapiro
,
M. S.
,
1990
, “
Direct Measurement of Resultant Forces in the Anterior Cruciate Ligament
,”
J. Bone Jt. Surg.
,
72-A
, pp.
557
567
.
9.
Sakane
,
M.
,
Fox
,
R. J.
,
Woo
,
S. L-Y
,
Livesay
,
G. A.
,
Li
,
G.
, and
Fu
,
F. H.
,
1997
, “
In Situ Forces in the Anterior Cruciate Ligament and its Bundles in Response to Anterior Tibial Loads
,”
J. Orthop. Res.
,
15
, pp.
285
293
.
10.
Takai
,
S.
,
Woo
,
S. L-Y
,
Livesay
,
G. A.
,
Adams
,
D. J.
, and
Fu
,
F. H.
,
1993
, “
Determination of the In Situ Loads on the Human Anterior Cruciate Ligament
,”
J. Orthop. Res.
,
11
, pp.
686
695
.
11.
Vahey
,
J. W.
, and
Draganich
,
L. F.
,
1991
, “
Tensions in the Anterior and Posterior Cruciate Ligaments of the Knee During Passive Loading: Predicting Ligament Load from In Situ Measurements
,”
J. Orthop. Res.
,
9
, pp.
529
538
.
12.
Ahmed
,
A. M.
,
Hyder
,
A.
,
Burke
,
D. L.
, and
Chan
,
K. H.
,
1987
, “
In Vitro Ligament Tension Pattern in the Flexed Knee in Passive Loading
,”
J. Orthop. Res.
,
5
, pp.
217
230
.
13.
Ahmed
,
A. M.
,
Burke
,
D. L.
,
Duncan
,
N. A.
, and
Chan
,
K. H.
,
1992
, “
Ligament Tension Pattern in the Flexed Knee in Combined Passive Anterior Translation and Axial Rotation
,”
J. Orthop. Res.
,
10
, pp.
854
867
.
14.
Markolf
,
K. L.
,
Burchfield
,
D. M.
,
Shapiro
,
M. M.
,
Shepard
,
M. F.
,
Finerman
,
G. A.
, and
Slanterback
,
J. L.
,
1995
, “
Combined Knee Loading States That Generate High Anterior Cruciate Ligament Forces
,”
J. Orthop. Res.
,
13
, pp.
930
935
.
15.
Arms
,
S. W.
,
Pope
,
M. H.
, and
Johnson
,
R. J.
,
1984
, “
The Biomechanics of Anterior Cruciate Ligament Rehabilitation and Reconstruction
,”
Am. J. Sports Med.
,,
12
, pp.
8
18
.
16.
Grood
,
E. S.
,
Suntay
,
W. J.
,
Noyes
,
F. R.
, and
Butler
,
D. L.
,
1984
, “
Biomechanics of the Knee-Extension Exercise
,”
J. Bone Jt. Surg.
,
66-A
, pp.
725
734
.
17.
Morrison
,
J. B.
,
1970
, “
The Mechanics of the Knee Joint in Relation to Normal Walking
,”
J. Biomech.
,
3
, pp.
51
61
.
18.
Patriarco
,
A. G.
,
Mann
,
R. W.
,
Simon
,
S. R.
, and
Mansour
,
J. M.
,
1981
, “
An Evaluation of the Optimization Models in the Prediction of Muscle Forces During Human Gait
,”
J. Biomech.
,
14
(
99
), pp.
513
525
.
19.
Seireg
,
A.
, and
Arvikar
,
R. J.
,
1975
, “
The Prediction of Muscular Load Sharing and Joint Forces in the Lower Extremities During Walking
,”
J. Biomech.
,
8
, pp.
89
102
.
20.
Andriacchi
,
T. P.
,
1990
, “
Dynamics of Pathological Motion: Applied to the Anterior Cruciate Deficient Knee
,”
J. Biomech.
,
23
, pp.
99
105
.
21.
Andriacchi
,
T. P.
, and
Birac
,
D.
,
1992
, “
Functional Testing in the Anterior Cruciate Ligament-Deficient Knee
,”
Clin. Orthop.
,
288
, pp.
40
47
.
22.
Berchuck
,
M.
,
Andriacchi
,
T. P.
,
Bach
,
R. B.
, and
Reider
,
B.
,
1990
, “
Gait Adaptation by Patients Who Have a Deficient Anterior Cruciate Ligament
,”
J. Bone Jt. Surg.
,
72-A
, pp.
871
877
.
23.
Muneta
,
T.
,
Ogiuchi
,
T.
,
Imai
,
S.
, and
Istida
,
A.
,
1998
, “
Measurements of Joint Moment and Knee Flexion Angle of Patients with Anterior Cruciate Ligament Deficiency During Level Walking and on One Leg Hop
,”
Biomed. Mater. Eng.
,
8
, pp.
207
218
.
24.
Timoney
,
J. M.
,
Inman
,
W. S.
,
Quesada
,
P. M.
,
Sharkey
,
P. E.
,
Barrack
,
R. L.
,
Skinner
,
H. B.
, and
Alexander
,
A. H.
,
1993
, “
Return of Normal Gait Patterns After Anterior Cruciate Ligament Reconstruction
,”
Am. J. Sports Med.
,
21
, pp.
887
889
.
25.
Devita
,
P.
,
Hortobagyi
,
T.
,
Barrier
,
J.
,
Torry
,
M.
,
Glover
,
K. L.
,
Speroni
,
D. L.
,
Money
,
J.
, and
Mahar
,
M.
,
1997
, “
Gait Adaptations Before and After Anterior Cruciate Ligament Reconstruction Surgery
,”
Med. Sci. Sports Exercise
,
29
, pp.
853
859
.
26.
Kowalk
,
D. L.
,
Duncan
,
J. A.
,
McCue
,
F. C.
, III
, and
Vaughan
,
C. L.
,
1997
, “
Anterior Cruciate Ligament Reconstruction and Joint Dynamics During Stair Climbing
,”
Med. Sci. Sports Exercise
,
29
, pp.
1406
1413
.
27.
Wexler
,
G.
,
Hurwitz
,
D. E.
,
Bush-Joseph
,
C. A.
,
Andriacchi
,
T. P.
, and
Bach
,
B. R.
, Jr.
,
1998
, “
Functional Gait Adaptations in Patients with Anterior Cruciate Ligament Deficiency Over Time
,”
Clin. Orthop.
,
348
, pp.
166
175
.
28.
McLean, C. A., 1990, “Design, Development and Performance of a Dynamics Knee Simulator,” M. Eng. Thesis, Department of Mechanical Engineering, McGill University, Montreal, Quebec.
29.
McLean
,
C. A.
, and
Ahmed
,
A. M.
,
1993
, “
Design and Development of an Unconstrained Dynamic Knee Simulator
,”
ASME J. Biomech. Eng.
,
115
, pp.
144
148
.
30.
Grood
,
E. S.
, and
Sunay
,
W. J.
,
1983
, “
A Joint Coordinate System for the Clinical Description of Three-Dimensional Motions: Application to the Knee
,”
ASME J. Biomech. Eng.
,
105
, pp.
136
144
.
31.
Mann
,
R. A.
, and
Hagy
,
J.
,
1980
, “
Biomechanics of Walking, Running, and Sprinting
,”
Am. J. Sports Med.
,
8
(
5
), pp.
345
350
.
32.
Grundy
,
M.
,
Tosh
,
P. A.
,
McLeish
,
R. D.
, and
Smidt
,
L.
,
1975
, “
An Investigation of the Centres of Pressure Under the Foot While Walking
,”
J. Bone Jt. Surg.
,
57-A
(
1
), pp.
98
103
.
33.
Andriacchi, T. P., and Mikosz, R. P., 1991, “Musculoskeletal Dynamics, Locomotion and Clinical Applications,” Basic Orthopaedic Biomechanics (Edited by V. C. Mow, W. C. Hayes), pp. 51–92, Raven Press, New York.
34.
Winter
,
D. A.
,
1980
, “
Overall Principle of Lower Limb Support During Stance Phase of Gait
,”
J. Biomech.
,
13
, pp.
923
927
.
35.
Chao
,
E. Y.
,
Laughman
,
R. K.
,
Schneider
,
E.
, and
Stauffer
,
R. N.
,
1983
, “
Normative Data of Knee Joint Motion and Ground Reaction Forces in Adult Level Walking
,”
J. Biomech.
,
16
(
3
), pp.
219
233
.
36.
Isacson
,
J.
,
Gransberg
,
L.
, and
Knutsson
,
E.
,
1986
, “
Three-Dimensional Elecrogoniometeric Gait Recording
,”
J. Biomech.
,
19
(
8
), pp.
627
635
.
37.
Lafortune
,
M. A.
,
Cavanagh
,
P. R.
,
Sommer
,
H. J.
, III
, and
Kalenak
,
A.
,
1992
, “
Three-Dimensional Kinematics of the Human Knee During Walking
,”
J. Biomech.
,
25
, pp.
347
357
.
38.
Kadaba
,
M. P.
,
Ramakrishnan
,
H. K.
, and
Wootten
,
M. E.
,
1990
, “
Measurement of Lower Extremity Kinematics During Level Walking
,”
J. Orthop. Res.
,
8
, pp.
383
392
.
39.
Andriacchi
,
T. P.
,
Andersson
,
G. B. J.
,
Fermier
,
R. W.
,
Stern
,
D.
, and
Galante
,
J. O.
,
1980
, “
A Study of Lower Limb Mechanics During Stair-Climbing
,”
J. Bone Jt. Surg.
,
62-A
, pp.
749
757
.
40.
McFadyen
,
B. J.
, and
Winter
,
D. A.
,
1988
, “
An Integrated Biomechanical Analysis of Normal Stair Ascent and Descent
,”
J. Biomech.
,
21
, pp.
733
744
.
41.
Livingston
,
L. A.
,
Stevenson
,
J. M.
, and
Olney
,
S. J.
,
1991
, “
Stairclimbing Kinematics on Stairs of Differing Dimensions
,”
Archive of Physical and Medical Rehabilitation
,
72
, pp.
398
402
.
42.
Grood
,
E. S.
,
Noyes
,
F. R.
,
Butler
,
D. L.
, and
Suntay
,
W. J.
,
1981
, “
Ligamentous and Capsular Restraints Preventing Straight Medial and Lateral Laxity in Intact Human Cadaver Knees
,”
J. Bone Jt. Surg.
,
63-A
, pp.
1257
1269
.
43.
Grood
,
E. S.
,
Stowers
,
S. F.
, and
Noyes
,
F. R.
,
1988
, “
Limits of Movement in the Human Knee. Effects of Sectioning the Posterior Cruciate Ligament and Posterolateral Structures
,”
J. Bone Jt. Surg.
,
70-A
, pp.
88
97
.
44.
Markolf
,
K. L.
,
Kochan
,
A.
, and
Amstutz
,
H. C.
,
1984
, “
Measurement of Knee Stiffness and Laxity in Patients with Documented Absence of the Anterior Cruciate Ligament
,”
J. Bone Jt. Surg.
,
66-A
, pp.
242
253
.
45.
Torzilli
,
P. A.
,
Greenberg
,
R. L.
, and
Insall
,
J.
,
1974
, “
An In Vivo Biomechanical Evaluation of Anterior-Posterior Motion of the Knee. Roentgenographic Measurement Technique, Stress Machine and Stable Population
,”
J. Bone Jt. Surg.
,
63-A
, pp.
161
170
.
46.
Pennock
,
G. R.
, and
Clark
,
K. J.
,
1990
, “
An Anatomy-Based Coordinate System for the Description of the Kinematic Displacement in the Human Knee
,”
J. Biomech.
,
23
, pp.
1209
1218
.
47.
Blankevoort
,
L.
,
Huiskes
,
R.
, and
de Lange
,
A.
,
1988
, “
The Envelope of Passive Knee Joint Motion
,”
J. Biomech.
,
21
, pp.
705
720
.
48.
Ahmed
,
A. M.
,
Burke
,
D. L.
, and
Hyder
,
A.
,
1986
, “
Force Analysis of the Patellar Mechanism
,”
J. Orthop. Res.
,
5
, pp.
69
85
.
49.
Matthews
,
L. S.
,
Sonstegard
,
D. A.
, and
Henke
,
J. A.
,
1977
, “
Load Bearing Characteristics of the Patellofemoral Joint
,”
Acta Orthop. Scand.
,
48
, pp.
511
516
.
50.
Wascher
,
D. C.
,
Markolf
,
K. L.
,
Shapiro
,
M. S.
, and
Finerman
,
G. A.
,
1993
, “
Direct In Vitro Measurement of Forces in the Cruciate Ligament
,”
J. Bone Jt. Surg.
,
75-A
, pp.
377
386
.
51.
Ahmed
,
A. M.
, and
Burke
,
D. L.
,
1983
, “
In Vitro Measurement of Static Pressure Distribution in Synovial Joints—Part I: Tibial Surface of the Knee
,”
ASME J. Biomech. Eng.
,
105
, pp.
216
225
.
You do not currently have access to this content.