Study of the behavior of trabecular bone at strains below 0.40 percent is of clinical and biomechanical importance. The goal of this work was to characterize, with respect to anatomic site, loading mode, and apparent density, the subtle concave downward stress–strain nonlinearity that has been observed recently for trabecular bone at these strains. Using protocols designed to minimize end-artifacts, 155 cylindrical cores from human vertebrae, proximal tibiae, proximal femora, and bovine proximal tibiae were mechanically tested to yield at 0.50 percent strain per second in tension or compression. The nonlinearity was quantified by the reduction in tangent modulus at 0.20 percent and 0.40 percent strain as compared to the initial modulus. For the pooled data, the mean±SD percentage reduction in tangent modulus at 0.20 percent strain was 9.07±3.24 percent in compression and 13.8±4.79 percent in tension. At 0.40 percent strain, these values were 23.5±5.71 and 35.7±7.10 percent, respectively. The magnitude of the nonlinearity depended on both anatomic site p<0.001 and loading mode p<0.001, and in tension was positively correlated with density. Calculated values of elastic modulus and yield properties depended on the strain range chosen to define modulus via a linear curve fit p<0.005. Mean percent differences in 0.20 percent offset yield strains were as large as 10.65 percent for some human sites. These results establish that trabecular bone exhibits nonlinearity at low strains, and that this behavior can confound intersite comparisons of mechanical properties. A nonlinear characterization of the small strain behavior of trabecular bone was introduced to characterize the initial stress–strain behavior more thoroughly.

1.
Jones, R. M., 1998, Mechanics of Composite Materials, 2nd ed., Taylor and Francis, Philadelphia.
2.
Abufarsakh
,
G.
,
1989
, “
New Material Models for Nonlinear Stress Strain Behavior of Composite Materials
,”
Composites
,
20
, No.
4
, pp.
349
360
.
3.
Jones
,
R. M.
, and
Morgan
,
H. S.
,
1977
, “
Analysis of Nonlinear Stress–Strain Behavior of Fiber-Reinforced Composite Materials
,”
AIAA J.
,
15
, No.
12
, pp.
1669
1676
.
4.
Keaveny
,
T. M.
,
Wachtel
,
E. F.
,
Ford
,
C. M.
, and
Hayes
,
W. C.
,
1994
, “
Differences Between the Tensile and Compressive Strengths of Bovine Tibial Trabecular Bone Depend on Modulus
,”
J. Biomech.
,
27
, No.
9
, pp.
1137
1146
.
5.
Kopperdahl
,
D. L.
, and
Keaveny
,
T. M.
,
1998
, “
Yield Strain Behavior of Trabecular Bone
,”
J. Biomech.
,
31
, No.
7
, pp.
601
608
.
6.
Burr
,
D. B.
,
Milgrom
,
C.
,
Fyhrie
,
D.
,
Forwood
,
M.
,
Nyska
,
M.
,
Finestone
,
A.
,
Hoshaw
,
S.
,
Saiag
,
E.
, and
Simkin
,
A.
,
1996
, “
In Vivo Measurement of Human Tibial Strains During Vigorous Activity
,”
Bone
,
18
, No.
5
, pp.
405
410
.
7.
Frost
,
H. M.
,
1992
, “
Perspectives: Bone’s Mechanical Usage Windows
,”
Bone Miner.
,
19
, No.
3
, pp.
257
271
.
8.
Linde
,
F.
, and
Hvid
,
I.
,
1987
, “
Stiffness Behavior of Trabecular Bone Specimens
,”
J. Biomech.
,
20
, No.
1
, pp.
83
89
.
9.
Turner
,
C. H.
,
1989
, “
Yield Behavior of Bovine Cancellous Bone
,”
ASME J. Biomech. Eng.
,
111
, No.
3
, pp.
256
260
.
10.
Keaveny
,
T. M.
,
Borchers
,
R. E.
,
Gibson
,
L. J.
, and
Hayes
,
W. C.
,
1993
, “
Theoretical Analysis of the Experimental Artifact in Trabecular Bone Compressive Modulus
,”
J. Biomech.
,
26
, Nos.
4–5
, pp.
599
607
.
11.
Keaveny
,
T. M.
,
Pinilla
,
T. P.
,
Crawford
,
R. P.
,
Kopperdahl
,
D. L.
, and
Lou
,
A.
,
1997
, “
Systematic and Random Errors in Compression Testing of Trabecular Bone
,”
J. Orthop. Res.
,
15
, pp.
101
110
.
12.
Odgaard
,
A.
, and
Linde
,
F.
,
1991
, “
The Underestimation of Young’s Modulus in Compressive Testing of Cancellous Bone Specimens
,”
J. Biomech.
,
24
, No.
8
, pp.
691
698
.
13.
Keaveny
,
T. M.
,
Guo
,
X. E.
,
Wachtel
,
E. F.
,
McMahon
,
T. A.
, and
Hayes
,
W. C.
,
1994
, “
Trabecular Bone Exhibits Fully Linear Elastic Behavior and Yields at Low Strains
,”
J. Biomech.
,
27
, No.
9
, pp.
1127
1136
.
14.
Rohl
,
L.
,
Larsen
,
E.
,
Linde
,
F.
,
Odgaard
,
A.
, and
Jorgensen
,
J.
,
1991
, “
Tensile and Compressive Properties of Cancellous Bone
,”
J. Biomech.
,
24
, No.
12
, pp.
1143
1149
.
15.
Zysset
,
P. K.
, and
Curnier
,
A.
,
1996
, “
A 3D Damage Model for Trabecular Bone Based on Fabric Tensors
,”
J. Biomech.
,
29
, No.
12
, pp.
1549
1558
.
16.
Ladd
,
A. J.
,
Kinney
,
J. H.
,
Haupt
,
D. L.
, and
Goldstein
,
S. A.
,
1998
, “
Finite-Element Modeling of Trabecular Bone: Comparison With Mechanical Testing and Determination of Tissue Modulus
,”
J. Orthop. Res.
,
16
, No.
5
, pp.
622
628
.
17.
Van Rietbergen
,
B.
,
Weinans
,
H.
,
Huiskes
,
R.
, and
Odgaard
,
A.
,
1995
, “
A New Method to Determine Trabecular Bone Elastic Properties and Loading Using Micromechanical Finite Element Models
,”
J. Biomech.
,
28
, No.
1
, pp.
69
81
.
18.
Chang
,
W. C. W.
,
Christensen
,
T. M.
,
Pinilla
,
T. P.
, and
Keaveny
,
T. M.
,
1999
, “
Isotropy of Uniaxial Yield Strains for Bovine Trabecular Bone
,”
J. Orthop. Res.
,
17
, pp.
582
585
.
19.
Galante
,
J.
,
Rostoker
,
W.
, and
Ray
,
R. D.
,
1970
, “
Physical Properties of Trabecular Bone
,”
Calcif. Tissue Res.
,
5
, No.
3
, pp.
236
246
.
20.
Keaveny
,
T. M.
, and
Hayes
,
W. C.
,
1993
, “
A 20-Year Perspective on the Mechanical Properties of Trabecular Bone
,”
ASME J. Biomech. Eng.
,
115
, No.
4(B
), pp.
534
542
.
21.
Rice
,
J. C.
,
Cowin
,
S. C.
, and
Bowman
,
J. A.
,
1988
, “
On the Dependence of the Elasticity and Strength of Cancellous Bone on Apparent Density
,”
J. Biomech.
,
21
, No.
2
, pp.
155
168
.
22.
Linde
,
F.
,
Hvid
,
I.
, and
Madsen
,
F.
,
1992
, “
The Effect of Specimen Geometry on the Mechanical Behavior of Trabecular Bone Specimens
,”
J. Biomech.
,
25
, pp.
359
368
.
23.
Vashishth
,
D.
,
Koontz
,
J.
,
Qiu
,
S. J.
,
Lundin-Cannon
,
D.
,
Yeni
,
Y. N.
,
Schaffler
,
M. B.
, and
Fyhrie
,
D. P.
,
2000
, “
In Vivo Diffuse Damage in Human Vertebral Trabecular Bone
,”
Bone
,
26
, pp.
147
152
.
24.
Haddock
,
S. M.
,
Yeh
,
O. C.
,
Mummaneni
,
P. M.
,
Rosenberg
,
W. S.
, and
Keaveny
,
T. M.
,
2000
, “
Fatigue Behavior of Human Vertebral Trabecular Bone
,”
Trans. Annu. Meet. — Orthop. Res. Soc.
,
25
, p.
733
733
.
25.
Keaveny
,
T. M.
,
Wachtel
,
E. F.
, and
Kopperdahl
,
D. L.
,
1999
, “
Mechanical Behavior of Human Trabecular Bone After Overloading
,”
J. Orthop. Res.
,
17
, pp.
346
353
.
26.
Bowman
,
S. M.
,
Keaveny
,
T. M.
,
Gibson
,
L. J.
,
Hayes
,
W. C.
, and
McMahon
,
T. A.
,
1994
, “
Compressive Creep Behavior of Bovine Trabecular Bone
,”
J. Biomech.
,
27
, pp.
301
310
.
27.
Carter
,
D. R.
, and
Hayes
,
W. C.
,
1977
, “
The Compressive Behavior of Bone as a Two-Phase Porous Structure
,”
J. Bone Jt. Surg.
,
59-A
, pp.
954
962
.
28.
Deligianni
,
D. D.
,
Maris
,
A.
, and
Missirlis
,
Y. F.
,
1994
, “
Stress Relaxation Behavior of Trabecular Bone Specimens
,”
J. Biomech.
,
27
, No.
12
, pp.
1469
1476
.
29.
Linde
,
F.
,
Norgaard
,
P.
,
Hvid
,
I.
,
Odgaard
,
A.
, and
Soballe
,
K.
,
1991
, “
Mechanical Properties of Trabecular Bone. Dependency on Strain Rate
,”
J. Biomech.
,
24
, No.
9
, pp.
803
809
.
30.
Schoenfeld
,
C. M.
,
Lautenschlager
,
E. P.
, and
Meyer
,
P. R. J.
,
1974
, “
Mechanical Properties of Human Cancellous Bone in the Femoral Head
,”
Med. Biol. Eng.
,
12
, No.
3
, pp.
313
317
.
31.
Zilch
,
H.
,
Rohlmann
,
A.
,
Bergmann
,
G.
, and
Kolbel
,
R.
,
1980
, “
Material Properties of Femoral Cancellous Bone in Axial Loading. Part II: Time Dependent Properties
,”
Arch. Orthop. Trauma Surg.
,
97
, No.
4
, pp.
257
262
.
32.
Keaveny, T. M., Yeh, O. C., Morgan, E. F., Chang, W. C., and Haddock, S. M., 1998, “Nonlinear Elastic Behavior of Trabecular Bone,” World Congress of Biomechanics, Vol. 3, p. 428.
33.
Silva
,
M. J.
,
Keaveny
,
T. M.
, and
Hayes
,
W. C.
,
1998
, “
Computed Tomography-Based Finite Element Analysis Predicts Failure Loads and Fracture Patterns for Vertebral Sections
,”
J. Orthop. Res.
,
16
, pp.
300
308
.
34.
Turner
,
C.
,
Anne
,
V.
, and
Pidaparti
,
R.
,
1997
, “
A Uniform Strain Criterion for Trabecular Bone Adaptation: Do Continuum-Level Strain Gradients Drive Adaptation?
J. Biomech.
,
30
, No.
6
, pp.
555
563
.
35.
Rohlmann
,
A.
,
Zilch
,
H.
,
Bergmann
,
G.
, and
Kolbel
,
R.
,
1980
, “
Material Properties of Femoral Cancellous Bone in Axial Loading. Part I: Time Independent Properties
,”
Arch. Orthop. Trauma Surg.
,
97
, No.
2
, pp.
95
102
.
36.
Mosekilde
,
L.
,
Mosekilde
,
L.
, and
Danielsen
,
C. C.
,
1987
, “
Biomechanical Competence of Vertebral Trabecular Bone in Relation to Ash Density and Age in Normal Individuals
,”
Bone
,
8
, No.
2
, pp.
79
85
.
37.
Ashman
,
R. B.
, and
Rho
,
J. Y.
,
1988
, “
Elastic Modulus of Trabecular Bone Material
,”
J. Biomech.
,
21
, No.
3
, pp.
177
181
.
38.
Linde
,
F.
,
Hvid
,
I.
, and
Pongsoipetch
,
B.
,
1989
, “
Energy Absorptive Properties of Human Trabecular Bone Specimens During Axial Compression
,”
J. Orthop. Res.
,
7
, No.
3
, pp.
432
439
.
39.
Lotz
,
J. C.
,
Gerhart
,
T. N.
, and
Hayes
,
W. C.
,
1990
, “
Mechanical Properties of Trabecular Bone From the Proximal Femur: A Quantitative CT Study
,”
J. Comput. Assist. Tomogr.
,
14
, No.
1
, pp.
107
114
.
40.
Ciarelli
,
M. J.
,
Goldstein
,
S. A.
,
Kuhn
,
J. L.
,
Cody
,
D. D.
, and
Brown
,
M. B.
,
1991
, “
Evaluation of Orthogonal Mechanical Properties and Density of Human Trabecular Bone From the Major Metaphyseal Regions With Materials Testing and Computed Tomography
,”
J. Orthop. Res.
,
9
, No.
5
, pp.
674
682
.
41.
Goulet
,
R. W.
,
Goldstein
,
S. A.
,
Ciarelli
,
M. J.
,
Kuhn
,
J. L.
,
Brown
,
M. B.
, and
Feldkamp
,
L. A.
,
1994
, “
The Relationship Between the Structural and Orthogonal Compressive Properties of Trabecular Bone
,”
J. Biomech.
,
27
, No.
4
, pp.
375
389
.
42.
Keller
,
T. S.
,
1994
, “
Predicting the Compressive Mechanical Behavior of Bone
,”
J. Biomech.
,
27
, No.
9
, pp.
1159
1168
.
43.
Hou
,
F. J.
,
Lang
,
S. M.
,
Hoshaw
,
S. J.
,
Reimann
,
D. A.
, and
Fyhrie
,
D. P.
,
1998
, “
Human Vertebral Body Apparent and Hard Tissue Stiffness
,”
J. Biomech.
,
31
, No.
11
, pp.
1009
1015
.
You do not currently have access to this content.