A study is conducted into the oscillatory behavior of a finite element model of an alveolar duct. Its load-bearing components consist of a network of elastin and collagen fibers and surface tension acting over the air–liquid interfaces. The tissue is simulated using a visco-elastic model involving nonlinear quasi-static stress–strain behavior combined with a reduced relaxation function. The surface tension force is simulated with a time- and area-dependent model of surfactant behavior. The model was used to simulate lung parenchyma under three surface tension cases: air-filled, liquid-filled, and lavaged with 3-dimethyl siloxane, which has a constant surface tension of 16 dyn/cm. The dynamic elastance Edyn and tissue resistance Rti were computed for sinusoidal tidal volume oscillations over a range of frequencies from 0.16–2.0 Hz. A comparison of the variation of Edyn and Rti with frequency between the model and published experimental data showed good qualitative agreement. Little difference was found in the model between Rti for the air-filled and lavaged models; in contrast, published data revealed a significantly higher value of Rti in the lavaged lung. The absence of a significant increase in Rti for the lavaged model can be attributed to only minor changes in the individual fiber bundle resistances with changes in their configuration. The surface tension was found to make an important contribution to both Edyn and Rti in the air-filled duct model. It was also found to amplify any existing tissue dissipative properties, despite exhibiting none itself over the small tidal volume cycles examined. [S0148-0731(00)00502-1]

1.
Stamenovic´
,
S.
, and
Barnas
,
G. M.
,
1995
, “
Effect of Surface Forces on Oscillatory Behaviour of Lungs
,”
J. Appl. Physiol.
,
79
, pp.
1578
1585
.
2.
Navajas
,
D.
,
Moretto
,
A.
,
Rotger
,
M.
,
Nagase
,
T.
,
Dallaire
,
J. M.
, and
Ludwig
,
M. S.
,
1995
, “
Dynamic Elastance and Tissue Resistance of Isolated Liquid-Filled Rat Lungs
,”
J. Appl. Physiol.
,
79
, pp.
1595
1600
.
3.
Schu¨rch
,
S.
,
Schu¨rch
,
D.
,
Curstedt
,
T.
, and
Robertson
,
B.
,
1994
, “
Surface Activity of Lipid Extract Surfactant in Relation to Film Area Compression and Collapse
,”
J. Appl. Physiol.
,
77
, pp.
974
986
.
4.
Denny
,
E.
, and
Schroter
,
R. C.
,
1995
, “
The Mechanical Behavior of a Mammalian Lung Alveolar Duct Model
,”
ASME J. Biomech. Eng.
,
117
, pp.
254
261
.
5.
Fung, Y. C., 1991, Biomechanics: Mechanical Properties of Living Tissues, Springer-Verlag, New York.
6.
Navajas
,
D.
,
Maksym
,
G. N.
, and
Bates
,
J. H. T.
,
1995
, “
Dynamic Viscoelastic Nonlinearity of Lung Parenchymal Tissue
,”
J. Appl. Physiol.
,
79
, pp.
348
356
.
7.
Otis
,
D. R.
, Jr.
,
Ingenito
,
E. P.
,
Kamm
,
R. D.
, and
Johnson
,
M.
,
1994
, “
Dynamic Surface Tension of Surfactant TA: Experiments and Theory
,”
J. Appl. Physiol.
,
77
, pp.
2681
2688
.
8.
Matsuda
,
M.
,
Fung
,
Y. C.
, and
Sobin
,
S. S.
,
1987
, “
Collagen and Elastin Fibres in Human Pulmonary Alveolar Mouths and Duct
,”
J. Appl. Physiol.
,
63
, pp.
1185
1194
.
9.
Sobin
,
S. S.
,
Fung
,
Y. C.
, and
Tremer
,
H. M.
,
1988
, “
Collagen and Elastin Fibres in Human Pulmonary Alveolar Walls
,”
J. Appl. Physiol.
,
64
, pp.
1659
1675
.
10.
Mercer
,
R. R.
, and
Crapo
,
J. D.
,
1990
, “
Spatial Distribution of Collagen and Elastin Fibres in the Lungs
,”
J. Appl. Physiol.
,
69
, pp.
756
765
.
11.
Denny
,
E.
, and
Schroter
,
R. C.
,
1997
, “
Relationships Between Alveolar Size and Fiber Distribution in a Mammalian Lung Alveolar Duct Model
,”
ASME J. Biomech. Eng.
,
119
, pp.
289
297
.
12.
Mijailovich
,
S. M.
,
Stamenovic´
,
D.
, and
Fredberg
,
J. J.
,
1993
, “
Toward a Kinetic Theory of Connective Tissue Mechanics
,”
J. Appl. Physiol.
,
74
, pp.
665
681
.
13.
Suki
,
B.
,
Baraba´si
,
A.
, and
Lutchen
,
K. R.
,
1994
, “
Lung Tissue Viscoelasticity: A Mathematical Framework and Its Molecular Basis
,”
J. Appl. Physiol.
,
76
, pp.
2749
2759
.
14.
Bates
,
J. H. T.
,
Maksym
,
G. N.
,
Navajas
,
D.
, and
Suki
,
B.
,
1994
, “
Lung Tissue Rheology and 1/f Noise
,”
Ann. Biomed. Eng.
,
22
, pp.
674
681
.
15.
Fredberg
,
J. J.
, and
Stamenovic´
,
D.
,
1989
, “
On the Imperfect Elasticity of Lung Tissue
,”
J. Appl. Physiol.
,
67
, pp.
2408
2419
.
16.
Mijailovich
,
S. M.
,
Stamenovic´
,
D.
,
Brown
,
R.
,
Leith
,
D. E.
, and
Fredberg
,
J. J.
,
1994
, “
Dynamic Moduli of Rabbit Lung Tissue and Pigeon Ligamentum Propatagiale Undergoing Uniaxial Cyclic Loading
,”
J. Appl. Physiol.
,
76
, pp.
773
782
.
17.
Putz
,
G.
,
Geoerke
,
J.
,
Taeusch
,
H. W.
, and
Clements
,
J. A.
,
1994
, “
Comparison of Captive and Pulsating Bubble Surfactometers With Use of Lung Surfactants
,”
J. Appl. Physiol.
,
76
, pp.
1425
1431
.
18.
Karakaplan
,
A. D.
,
Bieniek
,
M. P.
, and
Skalak
,
R.
,
1980
, “
A Mathematical Model of Lung Parenchyma
,”
ASME J. Biomech. Eng.
,
102
, pp.
124
136
.
19.
Kowe
,
R.
,
Schroter
,
R. C.
,
Matthews
,
F. L.
, and
Hitchings
,
D.
,
1986
, “
Analysis of Elastic and Surface Tension Effects in the Lung Alveolus Using Finite Element Methods
,”
J. Biomech.
,
19
, pp.
541
549
.
20.
Crisfield, M. A., 1991, Non-linear Finite Element Analysis of Solids and Structures, Wiley, London.
21.
Shen
,
Y. P.
,
Hasebe
,
N.
, and
Lee
,
L. X.
,
1995
, “
The Finite Element Method of Three-Dimensional Nonlinear Viscoelastic Large Deformation Problems
,”
Comput. Struct.
,
55
, pp.
659
666
.
22.
Ingenito
,
E. P.
,
Mark
,
L.
, and
Davidson
,
B.
,
1994
, “
Effects of Acute Lung Injury on Dynamic Tissue Properties
,”
J. Appl. Physiol.
,
77
, pp.
2689
2697
.
23.
Akahori
,
T.
,
Suzuki
,
S.
,
Suzuki
,
M.
, and
Okubo
,
T.
,
1993
, “
Dynamic Behavior of Alveolar Surface-to-Volume Ratio in Live Dogs by Light-Scattering Stereology
,”
J. Appl. Physiol.
,
75
, pp.
1624
1629
.
24.
Gil
,
J.
,
Bachofen
,
H.
,
Gehr
,
P.
, and
Weibel
,
E. R.
,
1979
, “
Alveolar Volume–Surface Area Relation in Air- and Saline-Filled Lungs Fixed by Vascular Perfusion
,”
J. Appl. Physiol.
,
47
, pp.
990
1001
.
25.
Wilson
,
T. A.
, and
Bachofen
,
H.
,
1982
, “
A Model of Mechanical Structure of the Alveolar Duct
,”
J. Appl. Physiol.
,
52
, pp.
1064
1070
.
26.
Mercer
,
R. R.
,
Laco
,
J. M.
, and
Crapo
,
J. D.
,
1987
, “
Three-Dimensional Reconstruction of Alveoli in the Rat Lung for Pressure–Volume Relationships
,”
J. Appl. Physiol.
,
62
, pp.
1480
1487
.
27.
Oldmixon
,
E. H.
,
Butler
,
J. P.
, and
Hoppin
,
F. G.
,
1989
, “
Lengths and Topology of Alveolar Septal Borders
,”
J. Appl. Physiol.
,
67
, pp.
1930
1940
.
28.
Yager
,
D.
,
Feldman
,
H.
, and
Fung
,
Y. C.
,
1992
, “
Microscopic vs. Macroscopic Deformation of the Pulmonary Alveolar Duct
,”
J. Appl. Physiol.
,
72
, pp.
1348
1354
.
29.
Hoppin, F. G., Jr., and Hildebrandt, J., 1977, “Mechanical Properties of the Lung,” Bioengineering Aspects of the Lung, J. B. West, ed., Marcel Dekker, New York.
30.
Mercer
,
R. R.
,
Russell
,
M. L.
, and
Crapo
,
J. D.
,
1994
, “
Alveolar Septal Structure in Different Species
,”
J. Appl. Physiol.
,
77
, pp.
1060
1066
.
31.
Hildebrandt
,
J.
,
1969
, “
Dynamic Properties of Air-Filled Excised Cat Lung Determined by Liquid Plethysmograph
,”
J. Appl. Physiol.
,
27
, pp.
246
250
.
32.
Lutchen
,
K. R.
,
Suki
,
B.
,
Zhang
,
Q.
,
Peta´k
,
F.
,
Daro´czy
,
B.
, and
Hantos
,
Z.
,
1994
, “
Airway and Tissue Mechanics During Physiological Breathing and Bronchoconstriction in Dogs
,”
J. Appl. Physiol.
,
77
, pp.
373
385
.
You do not currently have access to this content.