Abstract

Multi-point path planning problem is a classic problem of the mobile robot. The present research is concerned with solving the shortest path. In some realistic applications, the shortest path length is not always the significant concerned value of path planning. This article proposes an extended generalized cost concept to constitute the updated path planning strategy. The generalized costs are the combination of straightly moving and turning costs. A genetic algorithm is used to solve optimal path-planning problems. The different weight between the two kinds of costs and how the different parameters affect the optimal path solution is discussed. The generalized cost concept extends the application of path planning to diversified physical quantities. When estimating the composite optimal costs of the path planning problem, we only need to solve the path planning problem with simplex straightly moving costs or simplex turning costs.

References

1.
Liu
,
Y.
,
Shen
,
X.
, and
Chen
,
H.
,
2012
, “
An Adaptive Ant Colony Algorithm Based on Common Information for Solving the Traveling Salesman Problem
,”
Proceedings of the 2012 International Conference on Systems and Informatics (ICSAI2012)
,
Yantai, China
,
May 19–20
, pp.
763
766
.
2.
Glover
,
F.
, and
Rego
,
C.
,
2018
, “
New Assignment-Based Neighborhoods for Traveling Salesman and Routing Problems
,”
Networks
,
71
(
3
), pp.
170
187
.
3.
Potvin
,
J. Y.
,
1996
, “
Genetic Algorithms for the Traveling Salesman Problem
,”
Ann. Oper. Res.
,
63
(
1
), pp.
337
370
.
4.
Pandiri
,
V.
, and
Singh
,
A.
,
2018
, “
A Swarm Intelligence Approach for the Colored Traveling Salesman Problem
,”
Appl. Intell.
,
48
(
11
), pp.
4412
4428
.
5.
Pham
,
T.
,
Leyman
,
P.
, and
Causmaecker
,
P. D.
,
2018
, “
The Intermittent Travelling Salesman Problem
,”
Int. Trans. Oper. Res.
,
27
(
1
), pp.
525
548
.
6.
Hassoun
,
M.
,
Shoval
,
S.
,
Simchon
,
E.
, and
Yedidsion
,
L.
,
2020
, “
The Single Line Moving Target Traveling Salesman Problem With Release Times
,”
Ann. Oper. Res.
,
289
(
2
), pp.
449
458
.
7.
Gelareh
,
S.
,
Gendron
,
B.
,
Hanafi
,
S.
,
Monemi
,
R. N.
, and
Todosijevic
,
R.
,
2020
, “
The Selective Traveling Salesman Problem With Draft Limits
,”
J. Heuristics
,
26
(
3
), pp.
339
352
.
8.
Xu
,
X.
,
Li
,
J.
, and
Zhou
,
M.
,
2021
, “
Delaunay-Triangulation-Based Variable Neighborhood Search to Solve Large-Scale General Colored Traveling Salesman Problems
,”
IEEE Trans. Intell. Transp. Syst.
,
22
(
3
), pp.
1583
1593
.
9.
Hassani
,
I.
,
Maalei
,
I.
, and
Rekik
,
C.
,
2018
, “
Robot Path Planning With Avoiding Obstacles in Known Environment Using Free Segments and Turning Points Algorithm
,”
Math. Probl. Eng.
,
2018
(
1
), p.
2163278
.
10.
Zhuang
,
H.
,
Dong
,
K.
,
Qi
,
Y.
,
Wang
,
N.
, and
Dong
,
L.
,
2021
, “
Multi-Destination Path Planning Method Research of Mobile Robots Based on Goal of Passing Through the Fewest Obstacles
,”
Appl. Sci.
,
11
(
16
), p.
7378
.
11.
Yang
,
S.
,
Yang
,
S.
, and
Yi
,
X.
,
2018
, “
An Efficient Spatial Representation for Path Planning of Ground Robots in 3D Environments
,”
IEEE Access
,
6
(
1
), pp.
41539
41550
.
12.
Bircher
,
A.
,
Kamel
,
M.
,
Alexis
,
K.
,
Oleynikova
,
H.
, and
Siegwart
,
R.
,
2018
, “
Receding Horizon Path Planning for 3D Exploration and Surface Inspection
,”
Auton. Rob.
,
42
(
2
), pp.
291
306
.
13.
Kayacan
,
E.
, and
Chowhary
,
G.
,
2019
, “
Tracking Error Learning Control for Precise Mobile Robot Path Tracking in Outdoor Environment
,”
J. Intell. Rob. Syst.
,
95
(
3–4
), pp.
975
986
.
14.
Bozek
,
P.
, and
Lozhkin
,
A.
,
2019
, “
The Precision Calculating Method of Robots Moving by the Plane Trajectories
,”
Int. J. Adv. Robot. Syst.
,
16
(
6
), pp.
1
8
.
15.
Gao
,
Y.
,
Liu
,
J.
,
Hu
,
M. Q.
,
Xu
,
H.
,
Li
,
K. P.
, and
Hu
,
H.
,
2019
, “
A New Path Evaluation Method for Path Planning With Localizability
,”
IEEE Access
,
7
(
1
), pp.
162583
162597
.
16.
Li
,
X.
, and
Wang
,
M.
,
2020
, “
Consensus Control for Wheeled Mobile Robots Under Input Saturation Constraint
,”
IEEE Access
,
8
(
1
), pp.
177125
177130
.
17.
Savkin
,
A. V.
, and
Teimoori
,
H.
,
2010
, “
Decentralized Navigation of Groups of Wheeled Mobile Robots With Limited Communication
,”
IEEE Trans. Rob.
,
26
(
6
), pp.
1099
1104
.
18.
Lo
,
K.
,
Yi
,
W.
,
Wong
,
P.
,
Leung
,
K.
,
Leung
,
Y.
, and
Mak
,
S.
,
2018
, “
A Genetic Algorithm With New Local Operators for Multiple Traveling Salesman Problems
,”
Int. J. Comput. Intell. Syst.
,
11
(
1
), pp.
692
705
.
19.
Jana
,
R. K.
,
Mitra
,
K. K.
, and
Sharma
,
D. K.
,
2018
, “
Software Vendors Travel Management Decisions Using an Elitist Nonhomogeneous Genetic Algorithm
,”
Int. J. Prod. Econ.
,
202
(
1
), pp.
123
131
.
20.
Chen
,
X.
, and
Gao
,
P.
,
2020
, “
Path Planning and Control of Soccer Robot Based on Genetic Algorithm
,”
J. Ambient Intell. Humaniz. Comput.
,
11
(
12
), pp.
6177
6186
.
21.
Zhang
,
T.
,
Xu
,
G.
,
Zhan
,
X.
, and
Han
,
T.
,
2022
, “
A New Hybrid Algorithm for Path Planning of Mobile Robot
,”
J. Supercomput.
,
78
(
3
), pp.
4158
4181
.
You do not currently have access to this content.