Evaluation of Force Sensing Resistors for the Measurement of Interface Pressures in Lower Limb Prosthetics

[+] Author and Article Information
Eric Swanson

Department of Bioengineering, University of Washington, Seattle, WA 98195

Ethan Weathersby

Department of Bioengineering, University of Washington, Seattle, WA 98195

John Cagle

Department of Bioengineering, University of Washington, Seattle, WA 98195

Joan E Sanders

Department of Bioengineering, University of Washington, Seattle, WA 98195

1Corresponding author.

ASME doi:10.1115/1.4043561 History: Received October 18, 2018; Revised April 18, 2019


Understanding pressure distributions at the limb-socket interface is essential to the design and evaluation of prosthetic components for lower limb prosthesis users. Force sensing resistors (FSRs) are employed in prosthetics research to measure pressure at this interface due to their low cost, thin profile, and ease of use. While FSRs are known to be sensitive to many sources of error, few studies have systematically quantified these errors using test conditions relevant to lower limb prosthetics. The purpose of this study was to evaluate FSR accuracy for the measurement of lower limb prosthetics interface pressures. Two FSR models (Flexiforce A201 and Interlink 402) were subjected to a series of prosthetic-relevant tests. These tests included: (1) static compression, (2) cyclic compression, and (3) a combined static and cyclic compression protocol mimicking a variable activity (Walk-Sit-Stand) procedure. Flexiforce sensors outperformed Interlink sensors and were then subjected to two additional tests: (4) static curvature and (5) static shear stress. Results demonstrated that FSRs experienced significant errors all five tests. We concluded that: (1) if used carefully, FSRs can provide an estimate of prosthetic interface pressure, but these measurements should be interpreted within the expected range of possible measurement error given the setup; (2) FSRs should be calibrated in a setup that closely matches how they will be used for taking measurements; and (3) both Flexiforce and Interlink sensors can be used to estimate interface pressures, however in most cases Flexiforce sensors are likely to provide more accurate measurements.

Copyright (c) 2019 by ASME
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In