Research Papers

The Effects of Dynamic Loading on Bone Fracture Healing Under Ilizarov Circular Fixators

[+] Author and Article Information
Ganesharajah Ganadhiepan

Department of Infrastructure Engineering,
The University of Melbourne,
Parkville, Victoria 3010, Australia
e-mail: ganadhiepang@unimelb.edu.au

Lihai Zhang, Saeed Miramini, Priyan Mendis

Department of Infrastructure Engineering,
The University of Melbourne,
Parkville, Victoria 3010, Australia

Minoo Patel

Epworth Hospital Richmond,
Victoria 3121, Australia

Peter Ebeling

Department of Medicine,
Monash University,
Clayton, Victoria 3168, Australia

Yulong Wang

Rehabilitation Centre,
The First Affiliated Hospital,
Shenzhen University,
Guangdong 518060, China

1Corresponding author.

Manuscript received June 23, 2018; final manuscript received February 23, 2019; published online March 25, 2019. Assoc. Editor: Anton E. Bowden.

J Biomech Eng 141(5), 051005 (Mar 25, 2019) (12 pages) Paper No: BIO-18-1295; doi: 10.1115/1.4043037 History: Received June 23, 2018; Revised February 23, 2019

Early weight bearing appears to enhance bone fracture healing under Ilizarov circular fixators (ICFs). However, the role of early weight bearing in the healing process remains unclear. This study aims to provide insights into the effects of early weight bearing on healing of bone fractures stabilized with ICFs, with the aid of mathematical modeling. A computational model of fracture site was developed using poro-elastic formulation to simulate the transport of mesenchymal stem cells (MSCs), fibroblasts, chondrocytes, osteoblasts, osteogenic growth factor (OGF), and chondrogenic growth factor (CGF) and MSC differentiation during the early stage of healing, under various combinations of fracture gap sizes (GS), ICF wire pretension forces, and axial loads. 1 h of physiologically relevant cyclic axial loading followed by 23 h of rest in the post-inflammation phase (i.e., callus with granulation tissue) was simulated. The results show that physiologically relevant dynamic loading could significantly enhance cell and growth factor concentrations in the fracture site in a time and spatially dependent manner. 1 h cyclic loading (axial load with amplitude, PA, of 200 N at 1 Hz) increased the content of chondrocytes up to 37% (in all zones of callus), CGF up to 28% (in endosteal and periosteal callus) and OGF up to 50% (in endosteal and cortical callus) by the end of the 24 h period simulated. This suggests that the synergistic effect of dynamic loading-induced advective transport and mechanical stimuli due to early weight bearing is likely to enhance secondary healing. Furthermore, the study suggests that relatively higher PA values or lower ICF wire pretension forces or smaller GS could result in increased chondrocyte and GF content within the callus.

Copyright © 2019 by ASME
Your Session has timed out. Please sign back in to continue.


Schwartsman, V. , Martin, S. N. , Ronquist, R. A. , and Schwartsman, R. , 1992, “ The Ilizarov Alternative,” Clin. Orthop. Relat. Res., 278, pp. 207–216. https://journals.lww.com/clinorthop/Abstract/1992/05000/The_Ilizarov_Alternative.33.aspx
Tucker, H. L. , Kendra, J. C. , and Kinnebrew, T. E. , 1992, “ Management of Unstable Open and Closed Tibial Fractures Using the Ilizarov Method,” Clin. Orthop. Relat. Res., 280, pp. 125–135. https://journals.lww.com/clinorthop/Abstract/1992/07000/Management_of_Unstable_Open_and_Closed_Tibial.15.aspx
Dendrinos, G. K. , Kontos, S. , Katsenis, D. , and Dalas, A. , 1996, “ Treatment of High-Energy Tibial Plateau Fractures by the Ilizarov Circular Fixator,” J. Bone Jt. Surg. Br., 78(5), pp. 710–717. https://online.boneandjoint.org.uk/doi/abs/10.1302/0301-620X.78B5.0780710
Fragomen, A. T. , and Rozbruch, S. R. , 2007, “ The Mechanics of External Fixation,” HSS J., 3(1), pp. 13–29. [CrossRef] [PubMed]
Larsson, S. , Kim, W. , Caja, V. L. , Egger, E. L. , Inoue, N. , and Chao, E. Y. , 2001, “ Effect of Early Axial Dynamization on Tibial Bone Healing: A Study in Dogs,” Clin. Orthop. Relat. Res., 388, pp. 240–251. [CrossRef]
Epari, D. R. , Taylor, W. R. , Heller, M. O. , and Duda, G. N. , 2006, “ Mechanical Conditions in the Initial Phase of Bone Healing,” Clin. Mech., 21(6), pp. 646–655. https://www.sciencedirect.com/science/article/pii/S0268003306000209
Klein, P. , Schell, H. , Streitparth, F. , Heller, M. , Kassi, J. P. , Kandziora, F. , Bragulla, H. , Haas, N. P. , and Duda, G. N. , 2003, “ The Initial Phase of Fracture Healing Is Specifically Sensitive to Mechanical Conditions,” J. Orthop. Res., 21(4), pp. 662–669. [CrossRef] [PubMed]
Miramini, S. , Zhang, L. , Richardson, M. , Mendis, P. , Oloyede, A. , and Ebeling, P. , 2016, “ The Relationship Between Interfragmentary Movement and Cell Differentiation in Early Fracture Healing Under Locking Plate Fixation,” Australas. Phys. Eng. Sci. Med., 39(1), pp. 123–133. [CrossRef] [PubMed]
Goodship, A. , and Kenwright, J. , 1985, “ The Influence of Induced Micromovement Upon the Healing of Experimental Tibial Fractures,” Bone Jt. J., 67(4), pp. 650–655. https://online.boneandjoint.org.uk/doi/abs/10.1302/0301-620X.67B4.4030869
Witt, F. , Duda, G. N. , Bergmann, C. , and Petersen, A. , 2014, “ Cyclic Mechanical Loading Enables Solute Transport and Oxygen Supply in Bone Healing: An In Vitro Investigation,” Tissue Eng. Part A, 20(3–4), pp. 486–493. https://www.liebertpub.com/doi/abs/10.1089/ten.TEA.2012.0678 [PubMed]
O'Hara, B. , Urban, J. , and Maroudas, A. , 1990, “ Influence of Cyclic Loading on the Nutrition of Articular Cartilage,” Ann. Rheum. Dis., 49(7), pp. 536–539. [CrossRef] [PubMed]
Mauck, R. L. , Hung, C. T. , and Ateshian, G. A. , 2003, “ Modeling of Neutral Solute Transport in a Dynamically Loaded Porous Permeable Gel: Implications for Articular Cartilage Biosynthesis and Tissue Engineering,” J. Biomech. Eng., 125(5), pp. 602–614. http://biomechanical.asmedigitalcollection.asme.org/article.aspx?articleid=1410679 [PubMed]
Mavčič, B. , and Antolič, V. , 2012, “ Optimal Mechanical Environment of the Healing Bone Fracture/Osteotomy,” Int. Orthop., 36(4), pp. 689–695. [CrossRef] [PubMed]
Gardner, M. J. , Ricciardi, B. F. , Wright, T. M. , Bostrom, M. P. , and van der Meulen, M. C. , 2008, “ Pause Insertions During Cyclic In Vivo Loading Affect Bone Healing,” Clin. Orthop. Relat. Res., 466(5), pp. 1232–1238. [CrossRef] [PubMed]
Watson, M. , Mathias, K. , Maffulli, N. , Hukins, D. , and Shepherd, D. , 2007, “ Finite Element Modelling of the Ilizarov External Fixation System,” Proc. Inst. Mech. Eng., Part H, 221(8), pp. 863–871. [CrossRef]
Lacroix, D. , and Prendergast, P. , 2002, “ A Mechano-Regulation Model for Tissue Differentiation During Fracture Healing: Analysis of Gap Size and Loading,” J. Biomech., 35(9), pp. 1163–1171. [CrossRef] [PubMed]
Isaksson, H. , Van Donkelaar, C. C. , Huiskes, R. , and Ito, K. , 2006, “ Corroboration of Mechanoregulatory Algorithms for Tissue Differentiation During Fracture Healing: Comparison With In Vivo Results,” J. Orthop. Res., 24(5), pp. 898–907. [CrossRef] [PubMed]
Duda, G. N. , Bartmeyer, B. , Sporrer, S. , Taylor, W. R. , Raschke, M. , and Haas, N. P. , 2003, “ Does Partial Weight Bearing Unload a Healing Bone in External Ring Fixation?,” Langenbeck's Arch. Surg., 388(5), pp. 298–304. [CrossRef]
Duda, G. N. , Sollmann, M. , Sporrer, S. , Hoffmann, J. E. , Kassi, J.-P. , Khodadadyan, C. , and Raschke, M. , 2002, “ Interfragmentary Motion in Tibial Osteotomies Stabilized With Ring Fixators,” Clin. Orthop. Relat. Res., 396, pp. 163–172. [CrossRef]
Duda, G. N. , Sporrer, S. , Sollmann, M. , Hoffmann, J. E. , Kassi, J.-P. , Khodadadyan, C. , and Raschke, M. , 2003, “ Interfragmentary Movements in the Early Phase of Healing in Distraction and Correction Osteotomies Stabilized With Ring Fixators,” Langenbeck's Arch. Surg., 387(11–12), pp. 433–440. https://link.springer.com/article/10.1007/s00423-002-0340-8
Miramini, S. , Zhang, L. , Richardson, M. , Mendis, P. , and Ebeling, P. , 2016, “ Influence of Fracture Geometry on Bone Healing Under Locking Plate Fixations: A Comparison Between Oblique and Transverse Tibial Fractures,” Med. Eng. Phys., 38(10), pp. 1100–1108. [CrossRef] [PubMed]
Aronson, J. , Johnson, E. , and Harp, J. H. , 1989, “ Local Bone Transportation for Treatment of Intercalary Defects by the Ilizarov Technique: Biomechanical and Clinical Considerations,” Clin. Orthop. Relat. Res., 243, pp. 71–79. https://journals.lww.com/clinorthop/Abstract/1989/06000/Local_Bone_Transportation_for_Treatment_of.11.aspx
Zhang, L. , Miramini, S. , Smith, D. W. , Gardiner, B. S. , and Grodzinsky, A. J. , 2015, “ Time Evolution of Deformation in a Human Cartilage Under Cyclic Loading,” Ann. Biomed. Eng., 43(5), pp. 1166–1177. [CrossRef] [PubMed]
Barker, M. , and Seedhom, B. , 2001, “ The Relationship of the Compressive Modulus of Articular Cartilage With Its Deformation Response to Cyclic Loading: Does Cartilage Optimize Its Modulus so as to Minimize the Strains Arising in It Due to the Prevalent Loading Regime?,” Rheumatology, 40(3), pp. 274–284. [CrossRef] [PubMed]
Miramini, S. , Zhang, L. , Richardson, M. , Pirpiris, M. , Mendis, P. , Oloyede, K. , and Edwards, G. , 2015, “ Computational Simulation of the Early Stage of Bone Healing Under Different Configurations of Locking Compression Plates,” Comput. Methods Biomech. Biomed. Eng., 18(8), pp. 900–913. [CrossRef]
Peiffer, V. , Gerisch, A. , Vandepitte, D. , Van Oosterwyck, H. , and Geris, L. , 2011, “ A Hybrid Bioregulatory Model of Angiogenesis During Bone Fracture Healing,” Mech. Model. Mechanobiol., 10(3), pp. 383–395. [CrossRef]
Geris, L. , Gerisch, A. , Vander Sloten, J. , Weiner, R. , and Van Oosterwyck, H. , 2008, “ Angiogenesis in Bone Fracture Healing: A Bioregulatory Model,” J. Theor. Biol., 251(1), pp. 137–158. [CrossRef] [PubMed]
McCartney, W. , Mac Donald, B. , and Hashmi, M. , 2005, “ Comparative Performance of a Flexible Fixation Implant to a Rigid Implant in Static and Repetitive Incremental Loading,” J. Mater. Process. Technol., 169(3), pp. 476–484. [CrossRef]
Zhang, L. , Gardiner, B. S. , Smith, D. W. , Pivonka, P. , and Grodzinsky, A. J. , 2008, “ IGF Uptake With Competitive Binding in Articular Cartilage,” J. Biol. Syst., 16(2), pp. 175–195. [CrossRef]
Gardiner, B. , Smith, D. , Pivonka, P. , Grodzinsky, A. , Frank, E. , and Zhang, L. , 2007, “ Solute Transport in Cartilage Undergoing Cyclic Deformation,” Comput. Methods Biomech. Biomed. Eng., 10(4), pp. 265–278. [CrossRef]
Bailon-Plaza, A. , and Van Der Meulen, M. C. , 2001, “ A Mathematical Framework to Study the Effects of Growth Factor Influences on Fracture Healing,” J. Theor. Biol., 212(2), pp. 191–209. [CrossRef] [PubMed]
Isaksson, H. , van Donkelaar, C. C. , Huiskes, R. , and Ito, K. , 2008, “ A Mechano-Regulatory Bone-Healing Model Incorporating Cell-Phenotype Specific Activity,” J. Theor. Biol., 252(2), pp. 230–246. [CrossRef] [PubMed]
Zhang, L. , Miramini, S. , Richardson, M. , Mendis, P. , and Ebeling, P. , 2017, “ The Role of Impairment of Mesenchymal Stem Cell Function in Osteoporotic Bone Fracture Healing,” Australas. Phys. Eng. Sci. Med., 40(3), pp. 603–610. [CrossRef] [PubMed]
Andreykiv, A. , Van Keulen, F. , and Prendergast, P. , 2008, “ Simulation of Fracture Healing Incorporating Mechanoregulation of Tissue Differentiation and Dispersal/Proliferation of Cells,” Mech. Model. Mechanobiol., 7(6), pp. 443–461. [CrossRef]
Bailón-Plaza, A. , and van der Meulen, M. C. , 2003, “ Beneficial Effects of Moderate, Early Loading and Adverse Effects of Delayed or Excessive Loading on Bone Healing,” J. Biomech., 36(8), pp. 1069–1077. [CrossRef] [PubMed]
Huiskes, R. , Van Driel, W. , Prendergast, P. , and Søballe, K. , 1997, “ A Biomechanical Regulatory Model for Periprosthetic Fibrous-Tissue Differentiation,” J. Mater. Sci.: Mater. Med., 8(12), pp. 785–788. [CrossRef] [PubMed]
Prendergast, P. , Huiskes, R. , and Søballe, K. , 1997, “ Biophysical Stimuli on Cells During Tissue Differentiation at Implant Interfaces,” J. Biomech., 30(6), pp. 539–548. [CrossRef] [PubMed]
Zhang, L. , Gardiner, B. S. , Smith, D. W. , Pivonka, P. , and Grodzinsky, A. , 2007, “ The Effect of Cyclic Deformation and Solute Binding on Solute Transport in Cartilage,” Arch. Biochem. Biophys., 457(1), pp. 47–56. [CrossRef] [PubMed]
Isaksson, H. , Wilson, W. , van Donkelaar, C. C. , Huiskes, R. , and Ito, K. , 2006, “ Comparison of Biophysical Stimuli for Mechano-Regulation of Tissue Differentiation During Fracture Healing,” J. Biomech., 39(8), pp. 1507–1516. [CrossRef] [PubMed]
Zhang, G. , 2004, “ Geometric and Material Nonlinearity in Tensioned Wires of an External Fixator,” Clin. Mech., 19(5), pp. 513–518. https://www.sciencedirect.com/science/article/pii/S0268003304000233
Zamani, A. , and Oyadiji, S. , 2009, “ Analytical Modelling of Kirschner Wires in Ilizarov Circular External Fixator as Pretensioned Slender Beams,” J. R. Soc. Interface, 6(32), pp. 243–256. [CrossRef] [PubMed]
Antoci, V. , Voor, M. J. , Antoci, V. , and Roberts, C. S. , 2007, “ Effect of Wire Tension on Stiffness of Tensioned Fine Wires in External Fixation: A Mechanical Study,” Am. J. Orthop., 36(9), p. 473. https://www.amjorthopedics.com/article/effect-wire-tension-stiffness-tensioned-fine-wires-external-fixation-mechanical-study [PubMed]
Evans, R. C. , and Quinn, T. M. , 2006, “ Dynamic Compression Augments Interstitial Transport of a Glucose-Like Solute in Articular Cartilage,” Biophys. J., 91(4), pp. 1541–1547. [CrossRef] [PubMed]
Angele, P. , Yoo, J. , Smith, C. , Mansour, J. , Jepsen, K. , Nerlich, M. , and Johnstone, B. , 2003, “ Cyclic Hydrostatic Pressure Enhances the Chondrogenic Phenotype of Human Mesenchymal Progenitor Cells Differentiated In Vitro,” J. Orthop. Res., 21(3), pp. 451–457. [CrossRef] [PubMed]
Elder, S. H. , Kimura, J. , Soslowsky, L. J. , Lavagnino, M. , and Goldstein, S. A. , 2000, “ Effect of Compressive Loading on Chondrocyte Differentiation in Agarose Cultures of Chick Limb‐Bud Cells,” J. Orthop. Res., 18(1), pp. 78–86. [CrossRef] [PubMed]
Carroll, S. , Buckley, C. , and Kelly, D. , 2014, “ Cyclic Hydrostatic Pressure Promotes a Stable Cartilage Phenotype and Enhances the Functional Development of Cartilaginous Grafts Engineered Using Multipotent Stromal Cells Isolated From Bone Marrow and Infrapatellar Fat Pad,” J. Mech., 47(9), pp. 2115–2121. https://www.sciencedirect.com/science/article/pii/S0021929013006271
Vinardell, T. , Rolfe, R. A. , Buckley, C. T. , Meyer, E. G. , Ahearne, M. , Murphy, P. , and Kelly, D. J. , 2012, “ Hydrostatic Pressure Acts to Stabilise a Chondrogenic Phenotype in Porcine Joint Tissue Derived Stem Cells,” Eur. Cell Mater., 23(23), pp. 121–132. [CrossRef] [PubMed]
Sakao, K. , Takahashi, K. A. , Arai, Y. , Inoue, A. , Tonomura, H. , Saito, M. , Yamamoto, T. , Kanamura, N. , Imanishi, J. , Mazda, O. , and Kubo, T. , 2008, “ Induction of Chondrogenic Phenotype in Synovium-Derived Progenitor Cells by Intermittent Hydrostatic Pressure,” Osteoarthritis Cartilage, 16(7), pp. 805–814. [CrossRef] [PubMed]
Huang, C. Y. C. , Hagar, K. L. , Frost, L. E. , Sun, Y. , and Cheung, H. S. , 2004, “ Effects of Cyclic Compressive Loading on Chondrogenesis of Rabbit Bone‐Marrow Derived Mesenchymal Stem Cells,” Stem Cells, 22(3), pp. 313–323. [CrossRef] [PubMed]
Claes, L. , Wilke, H. , Augat, P. , Rübenacker, S. , and Margevicius, K. , 1995, “ Effect of Dynamization on Gap Healing of Diaphyseal Fractures Under External Fixation,” Clin. Mech., 10(5), pp. 227–234. https://www.sciencedirect.com/science/article/pii/0268003395997998
Claes, L. , Blakytny, R. , Göckelmann, M. , Schoen, M. , Ignatius, A. , and Willie, B. , 2009, “ Early Dynamization by Reduced Fixation Stiffness Does Not Improve Fracture Healing in a Rat Femoral Osteotomy Model,” J. Orthop. Res., 27(1), pp. 22–27. [CrossRef] [PubMed]
Glatt, V. , Miller, M. , Ivkovic, A. , Liu, F. , Parry, N. , Griffin, D. , Vrahas, M. , and Evans, C. , 2012, “ Improved Healing of Large Segmental Defects in the Rat Femur by Reverse Dynamization in the Presence of Bone Morphogenetic Protein-2,” J. Bone Jt. Surg.., 94(22), p. 2063. [CrossRef]
Glatt, V. , Bartnikowski, N. , Quirk, N. , Schuetz, M. , and Evans, C. , 2016, “ Reverse Dynamization: Influence of Fixator Stiffness on the Mode and Efficiency of Large-Bone-Defect Healing at Different Doses of rhBMP-2,” J. Bone Jt. Surg.., 98(8), p. 677. [CrossRef]
Tägil, M. , and Aspenberg, P. , 1999, “ Cartilage Induction by Controlled Mechanical Stimulation In Vivo,” J. Orthop. Res., 17(2), pp. 200–204. [CrossRef] [PubMed]
Lacroix, D. , Prendergast, P. , Li, G. , and Marsh, D. , 2002, “ Biomechanical Model to Simulate Tissue Differentiation and Bone Regeneration: Application to Fracture Healing,” Med. Biol. Eng. Comput., 40(1), pp. 14–21. [CrossRef] [PubMed]


Grahic Jump Location
Fig. 1

Schematic diagram showing the methodology proposed in this study

Grahic Jump Location
Fig. 2

Schematic diagram showing boundary conditions of bone cells and growth factors. cbcm= cbcfb=2×104 cells / ml and gbcb=gbcc = 2 μg/ml as per [26]. cbcb=1×106cells / ml as per [27].

Grahic Jump Location
Fig. 3

Concentrations of (a) MSC (b) fibroblasts (c) chondrocytes (d) osteoblasts (e) OGF, and (f) CGF within the callus under G5Control(free diffusion) and G5(200,90) cases after 24 h: (a) MSC (× 106 cells ml−1), (b) fibroblast (× 106 cells ml−1), (c) chondrocytes (× 106 cells ml−1), (d) osteoblasts (× 106 cells ml−1), (e) OGF (× 100 ng ml−1), and (f) CGF (× 100 ng ml−1) within the callus under G5Control(free diffusion) and G5(200,90) cases after 24 h

Grahic Jump Location
Fig. 4

Percent change of cells and growth factors within the endosteal zone of the callus (zone 1) under each case at the end of 24 h (1 h cyclic axial loading + 23 h of rest) in comparison with the control (free diffusion) case for (a) GS = 5 mm and (b) GS = 7 mm

Grahic Jump Location
Fig. 5

Percent change of cells and growth factors in cortical zone of the callus (zone 2) under each case at the end of 24 h (1 h cyclic axial loading + 23 h of rest) in comparison with the control (free diffusion). (a) GS = 5 mm and (b) GS = 7 mm.

Grahic Jump Location
Fig. 6

Percent change of cells and growth factors in periosteal zone of the callus (zone 3) under each case at the end of 24 h (1 h cyclic axial loading + 23 h of rest) in comparison with the control (free diffusion): (a) GS = 5 mm and (b) GS = 7 mm

Grahic Jump Location
Fig. 7

Percentage change of (a) MSC, (b) fibroblasts, (c) chondrocytes, (d) osteoblasts, (e) OGF, and (f) CGF within the callus under case G5(200,90) during the 24 h period simulated (1 h cyclic axial loading followed by 23 h of rest) in comparison with the control case G5Control(free diffusion)



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In