Research Papers

The Geometrical Arrangement of Knee Constraints That Makes Natural Motion Possible: Theoretical and Experimental Analysis

[+] Author and Article Information
Michele Conconi

DIN—Department of Industrial Engineering,
Alma Mater Studiorum—University of Bologna,
Viale Risorgimento 2,
Bologna 40136, Italy
e-mail: michele.conconi@unibo.it

Nicola Sancisi

DIN—Department of Industrial Engineering,
Alma Mater Studiorum—University of Bologna,
Viale Risorgimento 2,
Bologna 40136, Italy
e-mail: nicola.sancisi@unibo.it

Vincenzo Parenti-Castelli

DIN—Department of Industrial Engineering,
Alma Mater Studiorum—University of Bologna,
Viale Risorgimento 2,
Bologna 40136, Italy
e-mail: vincenzo.parenti@unibo.it

1Corresponding author.

Manuscript received January 18, 2018; final manuscript received February 21, 2019; published online March 25, 2019. Assoc. Editor: Beth A. Winkelstein.

J Biomech Eng 141(5), 051001 (Mar 25, 2019) (6 pages) Paper No: BIO-18-1035; doi: 10.1115/1.4043028 History: Received January 18, 2018; Revised February 21, 2019

The study of the knee natural motion, namely the unresisted motion that the knee exhibits in the absence of external loads, provides insights into the physiology of this articulation. The natural motion represents the baseline condition upon which deformations of its passive structures (i.e., ligaments and cartilage) take place when loads are applied. Moreover, during natural motion, the strain energy density stored within ligaments and cartilage is minimized. This reduces the chance of microdamage occurrences and the corresponding metabolic cost for tissue repairing. The study of the knee natural motion is thus fundamental in understanding the joint physiology. This paper shows that the line of action of resultant forces of all the knee constraints provided by the passive structures must intersect the instantaneous helical axis (IHA) to make the knee natural motion possible. In other words, the lines of action of all these constraints must cross the same line at each flexion angle to guarantee the natural motion of the joint. This geometrical property is first proven theoretically and then verified in four in vitro and one in vivo experiments. The geometrical characterization of the knee natural motion presented in this study provides a fundamental property that must be satisfied to allow the correct joint mobility. The knowledge of this property may thus allow the definition of better models, treatments, and devices.

Copyright © 2019 by ASME
Topics: Knee
Your Session has timed out. Please sign back in to continue.


Wilson, D. , and O'Connor, J. , 1997, “ A Three-Dimensional Geometric Model of the Knee for the Study of Joint Forces in Gait,” Gait Posture, 5(2), pp. 108–115. [CrossRef]
Wilson, D. , Feikes, J. , Zavatsky, A. , and O'Connor, J. , 2000, “ The Components of Passive Knee Movement Are Coupled to Flexion Angle,” J. Biomech., 33(4), pp. 465–473. [CrossRef] [PubMed]
Forlani, M. , Sancisi, N. , Conconi, M. , and Parenti-Castelli, V. , 2016, “ A New Test Rig for Static and Dynamic Evaluation of Knee Motion Based on a Cable-Driven Parallel Manipulator Loading System,” Meccanica, 51(7), pp. 1571–1581. [CrossRef]
Wilson, D. R. , Feikes, J. D. , and O'Connor, J. J. , 1998, “ Ligaments and Articular Contact Guide Passive Knee Flexion,” J. Biomech., 31(12), pp. 1127–1136. [CrossRef] [PubMed]
Belvedere, C. , Ensini, A. , Feliciangeli, A. , Cenni, F. , D'Angeli, V. , Giannini, S. , and Leardini, A. , 2012, “ Geometrical Changes of Knee Ligaments and Patellar Tendon During Passive Flexion,” J. Biomech., 45(11), pp. 1886–1892. [CrossRef] [PubMed]
Conconi, M. , Sancisi, N. , and Parenti-Castelli, V. , 2018, “ Subject-Specific Model of Knee Natural Motion: A Non-Invasive Approach,” Advances in Robot Kinematics, J. Lenarcic and J. Merlet , eds., Springer, Cham, Switzerland, pp. 261–269.
Carter, D. R. , 1987, “ Mechanical Loading History and Skeletal Biology,” J. Biomech., 20(11–12), pp. 1095–1109. [CrossRef] [PubMed]
Kapandji, I. A. , 2010, Physiology of the Joints, Churchill Livingstone, London.
Herder, J. , 2001, “ Energy-Free Systems. Theory, Conception and Design of Statically Balanced Spring Mechanisms,” Ph.D. thesis, Delft University of Technology, Delft, The Netherlands.
Deepak, S. , and Ananthasuresh, G. , 2012, “ Perfect Static Balance of Linkages by Addition of Springs but Not Auxiliary Bodies,” ASME J. Mech. Rob., 4(2), p. 021014. [CrossRef]
Fujie, H. , and Imade, K. , 2015, “ Effects of Low Tangential Permeability in the Superficial Layer on the Frictional Property of Articular Cartilage,” Biosurf. Biotribology, 1(2), pp. 124–129. [CrossRef]
Hunt, K. , 1978, Kinematic Geometry of Mechanisms, Clarendon Press, Oxford, UK.
Parenti-Castelli, V. , and Di Gregorio, R. , 2000, “ Parallel Mechanisms Applied to the Human Knee Passive Motion Simulation,” Seventh ARK International Symposium on Advances in Robot Kinematics, J. Lenarcic and M. Stanisic , eds., Springer, Dordrecht, The Netherlands, pp. 333–344.
Ottoboni, A. , Parenti-Castelli, V. , Sancisi, N. , Belvedere, C. , and Leardini, A. , 2010, “ Articular Surface Approximation in Equivalent Spatial Parallel Mechanism Models of the Human Knee Joint: An Experiment-Based Assessment,” Proc. Inst. Mech. Eng., Part H, 224(9), pp. 1121–1132. [CrossRef]
Nardini, F. , Sancisi, N. , Belvedere, C. , Conconi, M. , Leardini, A. , and Parenti-Castelli, V. , 2016, “ Definition of a Subject-Specific Model of the Knee In Vivo,” Gait Posture, 49, p. S6. [CrossRef]
Blankevoort, L. , Huiskes, R. , and de Lange, A. , 1990, “ Helical Axes of Passive Knee Joint Motions,” J. Biomech., 23(12), pp. 1219–1229. [CrossRef] [PubMed]
Sancisi, N. , and Parenti-Castelli, V. , 2010, “ A 1-DOF Parallel Spherical Wrist for the Modelling of the Knee Passive Motion,” Mech. Mach. Theory, 45(4), pp. 658–665. [CrossRef]
Sancisi, N. , Zannoli, D. , Parenti-Castelli, V. , Belvedere, C. , and Leardini, A. , 2011, “ A One-Degree-of-Freedom Spherical Mechanism for Human Knee Joint Modelling,” Proc. Inst. Mech. Eng., Part H, 225(8), pp. 725–735. [CrossRef]
Hollister, A. M. , Jatana, S. , Singh, A. K. , Sullivan, W. W. , and Lupichuk, A. G. , 1993, “ The Axes of Rotation of the Knee,” Clin. Orthop. Relat. Res., 290, pp. 259–268.
Churchill, D. L. , Incavo, S. J. , Johnson, C. C. , and Beynnon, B. D. , 1998, “ The Transepicondylar Axis Approximates the Optimal Flexion Axis of the Knee,” Clin. Orthop. Relat. Res., 2(356), pp. 111–118.
Kim, W. , and Kohles, S. S. , 2012, “ A Reciprocal Connection Factor for Assessing Knee-Joint Function,” Comput. Methods Biomech. Biomed. Eng., 15(9), pp. 911–917. [CrossRef]
Lipkin, H. , and Duffy, J. , 1988, “ Hybrid Twist and Wrench Control for a Robotic Manipulator,” ASME J. Mech., Transm., Autom. Des., 110(2), pp. 138–144. [CrossRef]
Blankevoort, L. , Huiskes, R. , and De Lange, A. , 1988, “ The Envelope of Passive Knee Joint Motion,” J. Biomech., 21(9), pp. 705–720. [CrossRef] [PubMed]
Fregly, B. J. , Rahman, H. A. , and Banks, S. A. , 2005, “ Theoretical Accuracy of Model-Based Shape Matching for Measuring Natural Knee Kinematics With Single-Plane Fluoroscopy,” ASME J. Biomech. Eng., 127(4), pp. 692–699. [CrossRef]
Tsai, L. , 1999, Robot Analysis: The Mechanics of Serial and Parallel Manipulators, Wiley, Hoboken, NJ.
Braz, P. , and Silva, W. , 2010, “ Meniscus Morphometric Study in Humans,” J. Morphol. Sci., 27(2), pp. 62–66.
Johnson, K. , 1985, Contact Mechanics, Cambridge University Press, Cambridge, UK.
Anderson, D. D. , Iyer, K. S. , Segal, N. A. , Lynch, J. A. , and Brown, T. D. , 2010, “ Implementation of Discrete Element Analysis for Subject-Specific, Population-Wide Investigations of Habitual Contact Stress Exposure,” J. Appl. Biomech., 26(2), pp. 215–223. [CrossRef] [PubMed]
Abraham, C. L. , Maas, S. A. , Weiss, J. A. , Ellis, B. J. , Peters, C. L. , and Anderson, A. E. , 2013, “ A New Discrete Element Analysis Method for Predicting Hip Joint Contact Stresses,” J. Biomech., 46(6), pp. 1121–1127. [CrossRef] [PubMed]
Kern, A. M. , and Anderson, D. D. , 2015, “ Expedited Patient-Specific Assessment of Contact Stress Exposure in the Ankle Joint Following Definitive Articular Fracture Reduction,” J. Biomech., 48(12), pp. 3427–3432. [CrossRef] [PubMed]
Iwasaki, N. , Genda, E. , Barrance, P. J. , Minami, A. , Kaneda, K. , and Chao, E. Y. , 1998, “ Biomechanical Analysis of Limited Intercarpal Fusion for the Treatment of Kienböck's Disease: A Three-Dimensional Theoretical Study,” J. Orthop. Res., 16(2), pp. 256–263. [CrossRef] [PubMed]
Marquez-Florez, K. , Vergara-Amador, E. , de Las Casas, E. B. , and Garzon-Alvarado, D. A. , 2015, “ Theoretical Distribution of Load in the Radius and Ulna Carpal Joint,” Comput. Biol. Med., 60, pp. 100–106. [CrossRef] [PubMed]
Rajendran, K. , 1985, “ Mechanism of Locking at the Knee Joint,” J. Anat., 143, pp. 189–194. [PubMed]
Tersi, L. , Barre, A. , Fantozzi, S. , and Stagni, R. , 2013, “ In Vitro Quantification of the Performance of Model-Based Mono-Planar and Bi-Planar Fluoroscopy for 3D Joint Kinematics Estimation,” Med. Biol. Eng. Comput., 51(3), pp. 257–265. [CrossRef] [PubMed]
Conconi, M. , and Parenti-Castelli, V. , 2014, “ A Sound and Efficient Measure of Joint Congruence,” Proc. Inst. Mech. Eng., Part H, 228(9), pp. 935–941. [CrossRef]
Gasparutto, X. , Sancisi, N. , Jacquelin, E. , Parenti-Castelli, V. , and Dumas, R. , 2015, “ Validation of a Multi-Body Optimization With Knee Kinematic Models Including Ligament Constraints,” J. Biomech., 48(6), pp. 1141–1146. [CrossRef] [PubMed]
Sancisi, N. , and Parenti-Castelli, V. , 2011, “ On the Role of Ligaments in the Guidance of the Human Knee Passive Motion,” Proc. EUROMECH Colloq., 511, pp. 1–9.
Wang, C. J. , and Walker, P. S. , 1973, “ The Effects of Flexion and Rotation on the Length Patterns of the Ligaments of the Knee,” J. Biomech., 6(6), pp. 587–596. [CrossRef] [PubMed]
Rovick, J. S. , Reuben, J. D. , Schrager, R. J. , and Walker, P. S. , 1991, “ Relation Between Knee Motion and Ligament Length Patterns,” Clin. Biomech. (Bristol, Avon), 6(4), pp. 213–220. [CrossRef] [PubMed]
Victor, J. , Wong, P. , Witvrouw, E. , Sloten, J. V. , and Bellemans, J. , 2009, “ How Isometric Are the Medial Patellofemoral, Superficial Medial Collateral, and Lateral Collateral Ligaments of the Knee?,” Am. J. Sports Med., 37(10), pp. 2028–2036. [CrossRef] [PubMed]
Andersen, M. S. , Benoit, D. L. , Damsgaard, M. , Ramsey, D. K. , and Rasmussen, J. , 2010, “ Do Kinematic Models Reduce the Effects of Soft Tissue Artefacts in Skin Marker-Based Motion Analysis? An In Vivo Study of Knee Kinematics,” J. Biomech., 43(2), pp. 268–273. [CrossRef] [PubMed]
Clément, J. , Dumas, R. , Hagemeister, N. , and De Guise, J. A. , 2015, “ Soft Tissue Artifact Compensation in Knee Kinematics by Multi-Body Optimization: Performance of Subject-Specific Knee Joint Models,” J. Biomech., 48(14), pp. 3796–3802. [CrossRef] [PubMed]
Martelli, S. , Sancisi, N. , Conconi, M. , Parenti-Castelli, V. , and Reynolds, K. , 2018, “ Sensitivity of Musculoskeletal Model to Planar Simplification of Tibiofemoral Motion,” Eighth World Congress of Biomechanics (WCB), Dublin, Ireland, July 8–12, Paper No. O1495.
Leardini, A. , Belvedere, B. , Nardini, F. , Sancisi, N. , Conconi, M. , and Parenti-Castelli, V. , 2017, “ Kinematic Models of Lower Limb Joints for Musculo-Skeletal Modelling and Optimization in Gait Analysis,” J. Biomech., 62(6), pp. 77–86. [PubMed]
Brito da Luz, S. , Modenese, L. , Sancisi, N. , Mills, P. M. , Kennedy, B. , Beck, B. R. , and Lloyd, D. G. , 2017, “ Feasibility of Using MRIs to Create Subject-Specific Parallel-Mechanism Joint Models,” J. Biomech., 28(53), pp. 45–55.
Leardini, A. , O'Connor, J. , Catani, F. , and Giannini, S. , 1999, “ Kinematics of the Human Ankle Complex in Passive Flexion; A Single Degree of Freedom System,” J. Biomech., 32(2), pp. 111–118. [CrossRef] [PubMed]
Conconi, M. , Leardini, A. , and Parenti-Castelli, V. , 2015, “ Joint Kinematics From Functional Adaptation: A Validation on the Tibio-Talar Articulation,” J. Biomech., 48(12), pp. 2960–2967. [CrossRef] [PubMed]
Sancisi, N. , Baldisserri, B. , Parenti-Castelli, V. , Belvedere, C. , and Leardini, A. , 2014, “ One-Degree-of-Freedom Spherical Model for the Passive Motion of the Human Ankle Joint,” Med. Biol. Eng. Comput., 52(4), pp. 363–373. [CrossRef] [PubMed]


Grahic Jump Location
Fig. 1

The screws representing the knee IHA (T) and the ith wrench (Wi) at the generic instant of time

Grahic Jump Location
Fig. 2

Representation of the two geometrical conditions that satisfy Eq. (6): incident (a) and parallel (b) screws

Grahic Jump Location
Fig. 3

Representation of the IHA (green line) and of the lines of action of the ligament (blue) and contact (red) wrenches every 30 deg of the analyzed range of knee natural motion for a representative specimen (leg 2). Spheres represent the closest point to the IHA on each wrench and their color goes from white (di > 5 mm) to the one of the corresponding line (di = 0 mm). Colors on the tibia are proportional to the tibiofemoral relative distance (red: distance ≤ 0 mm; blue: distance > 7 mm). (For colors, please refer to the online version of the paper.)



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In