0
Research Papers

Computationally Optimizing the Compliance of Multilayered Biomimetic Tissue Engineered Vascular Grafts

[+] Author and Article Information
Ehab A. Tamimi

Department of Bioengineering,
University of Pittsburgh,
Pittsburgh, PA 15213
e-mail: ehab.t@pitt.edu

Diana Catalina Ardila

Department of Bioengineering,
University of Pittsburgh,
Pittsburgh, PA 15213
e-mail: cata.ardila28@pitt.edu

Burt D. Ensley

Protein Genomics, Inc,
Sedona, AZ 86336
e-mail: burt@burtensley.com

Robert S. Kellar

Center for Bioengineering Innovation,
Northern Arizona University,
Flagstaff, AZ 86011;
Department of Mechanical Engineering,
Northern Arizona University,
Flagstaff, AZ 86011;
Department of Biological Sciences,
Northern Arizona University,
Flagstaff, AZ 86011
e-mail: robert.kellar@nau.edu

Jonathan P. Vande Geest

Mem. ASME
Department of Bioengineering,
University of Pittsburgh,
Pittsburgh, PA 15213;
McGowan Institute for Regenerative Medicine,
300 Technology Drive,
Pittsburgh, PA 15219
e-mail: jpv20@pitt.edu

1Corresponding author.

Manuscript received September 2, 2018; final manuscript received February 6, 2019; published online April 22, 2019. Assoc. Editor: Raffaella De Vita.

J Biomech Eng 141(6), 061003 (Apr 22, 2019) (14 pages) Paper No: BIO-18-1396; doi: 10.1115/1.4042902 History: Received September 02, 2018; Revised February 06, 2019

Coronary artery bypass grafts used to treat coronary artery disease (CAD) often fail due to compliance mismatch. In this study, we have developed an experimental/computational approach to fabricate an acellular biomimetic hybrid tissue engineered vascular graft (TEVG) composed of alternating layers of electrospun porcine gelatin/polycaprolactone (PCL) and human tropoelastin/PCL blends with the goal of compliance-matching to rat abdominal aorta, while maintaining specific geometrical constraints. Polymeric blends at three different gelatin:PCL (G:PCL) and tropoelastin:PCL (T:PCL) ratios (80:20, 50:50, and 20:80) were mechanically characterized. The stress–strain data were used to develop predictive models, which were used as part of an optimization scheme that was implemented to determine the ratios of G:PCL and T:PCL and the thickness of the individual layers within a TEVG that would compliance match a target compliance value. The hypocompliant, isocompliant, and hypercompliant grafts had target compliance values of 0.000256, 0.000568, and 0.000880 mmHg−1, respectively. Experimental validation of the optimization demonstrated that the hypercompliant and isocompliant grafts were not statistically significant from their respective target compliance values (p-value = 0.37 and 0.89, respectively). The experimental compliance values of the hypocompliant graft were statistically significant than their target compliance value (p-value = 0.047). We have successfully demonstrated a design optimization scheme that can be used to fabricate multilayered and biomimetic vascular grafts with targeted geometry and compliance.

FIGURES IN THIS ARTICLE
<>
Copyright © 2019 by ASME
Your Session has timed out. Please sign back in to continue.

References

Benjamin, E. J. , Blaha, M. J. , Chiuve, S. E. , Cushman, M. , Das, S. R. , Deo, R. D. , Ferranti, S. D. , Floyd, J. , Fornage, M. , Gillespie, C. , Isasi, C. R. , Jiménez, M. C. , Jordan, L. C. , Judd, S. E. , Lackland, D. , Lichtman, J. H. , Lisabeth, L. , Liu, S. , Longenecker, C. T. , Mackey, R. H. , Matsushita, K. , Mozaffarian, D. , Mussolino, M. E. , Nasir, K. , Neumar, R. W. , Palaniappan, L. , Pandey, D. K. , Thiagarajan, R. R. , Reeves, M. J. , Ritchey, M. , Rodriguez, C. J. , Roth, G. A. , Rosamond, W. D. , Sasson, C. , Towfighi, A. , Tsao, C. W. , Turner, M. B. , Virani, S. S. , Voeks, J. H. , Willey, J. Z. , Wilkins, J. T. , Wu, J. H. , Alger, H. M. , Wong, S. S. , and Muntner, P. , 2017, “ Heart Disease and Stroke Statistics—2017 Update: A Report From the American Heart Association,” Circulation, 135(10), pp. e146–e603.
Ferrari, E. R. , and von Segesser, L. K. , 2006, “ Arterial Grafting for Myocardial Revascularization: How Better Is It?,” Curr. Opin. Cardiol., 21(6), pp. 584–588. https://www.ncbi.nlm.nih.gov/pubmed/17053408 [PubMed]
Goldman, S. , Zadina, K. , Moritz, T. , Ovitt, T. , Sethi, G. , Copeland, J. G. , Thottapurathu, L. , Krasnicka, B. , Ellis, N. , Anderson, R. J. , and Henderson, W. , 2004, “ Long-Term Patency of Saphenous Vein and Left Internal Mammary Artery Grafts After Coronary Artery Bypass Surgery: Results From a Department of Veterans Affairs Cooperative Study,” J. Am. Coll. Cardiol., 44(11), pp. 2149–2156. [CrossRef] [PubMed]
Hess, C. N. , Lopes, R. D. , Gibson, C. M. , Hager, R. , Wojdyla, D. M. , Englum, B. R. , Mack, M. , Califf, R. , Kouchoukos, N. T. , Peterson, E. D. , and Alexander, J. H. , 2014, “ Saphenous Vein Graft Failure After Coronary Artery Bypass Surgery: Insights From PREVENT IV,” Circulation, 130(17), pp, 1445–1451.
Kurobe, H. , Maxfield, M. W. , Breuer, C. K. , and Shinoka, T. , 2012, “ Concise Review: Tissue-Engineered Vascular Grafts for Cardiac Surgery: Past, Present, and Future,” Stem Cells Transl. Med., 1(7), pp. 566–571. [CrossRef] [PubMed]
Kannan, R. Y. , Salacinski, H. J. , Butler, P. E. , Hamilton, G. , and Seifalian, A. M. , 2005, “ Current Status of Prosthetic Bypass Grafts: A Review,” J. Biomed. Mater. Res., Part B, 74(1), pp. 570–581. [CrossRef]
Rocco, K. A. , Maxfield, M. W. , Best, C. A. , Dean, E. W. , and Breuer, C. K. , 2014, “ In Vivo Applications of Electrospun Tissue-Engineered Vascular Grafts: A Review,” Tissue Eng. Part B, 20(6), pp. 628–640. [CrossRef]
Roll, S. , Müller-Nordhorn, J. , Keil, T. , Scholz, H. , Eidt, D. , Greiner, W. , and Willich, S. N. , 2008, “ Dacron® vs. PTFE as Bypass Materials in Peripheral Vascular Surgery—Systematic Review and Meta-Analysis,” BMC Surg., 8, p. 22. [CrossRef] [PubMed]
Spadaccio, C. , Nappi, F. , Al-Attar, N. , Sutherland, F. W. , Acar, C. , Nenna, A. , Trombetta, M. , Chello, M. , and Rainer, A. , 2016, “ Old Myths, New Concerns: The Long-Term Effects of Ascending Aorta Replacement With Dacron Grafts. Not All That Glitters Is Gold,” J. Cardiovasc. Transl. Res., 9(4), pp. 334–342. [CrossRef] [PubMed]
Catto, V. , Farè, S. , Freddi, G. , and Tanzi, M. C. , 2014, “ Vascular Tissue Engineering: Recent Advances in Small Diameter Blood Vessel Regeneration,” ISRN Vasc. Med., 2014, p. 27.
Nemeno-Guanzon, J. G. , Lee, S. , Berg, J. R. , Jo, Y. H. , Yeo, J. E. , Nam, B. M. , Koh, Y.-G. , and Lee, J. I. , 2012, “ Trends in Tissue Engineering for Blood Vessels,” J. Biomed. Biotechnol., 2012, p. 956345. [CrossRef] [PubMed]
Wang, X. , Lin, P. , Yao, Q. , and Chen, C. , 2007, “ Development of Small-Diameter Vascular Grafts,” World J. Surg., 31(4), pp. 682–689. [CrossRef] [PubMed]
Wang, S. , Mo, X. M. , Jiang, B. J. , Gao, C. J. , Wang, H. S. , Zhuang, Y. G. , and Qiu, L. J. , 2013, “ Fabrication of Small-Diameter Vascular Scaffolds by Heparin-Bonded P(LLA-CL) Composite Nanofibers to Improve Graft Patency,” Int. J. Nanomed., 8, pp. 2131–2139. [CrossRef]
Hashi, C. K. , Derugin, N. , Janairo, R. R. R. , Lee, R. , Schultz, D. , Lotz, J. , and Li, S. , 2010, “ Anti-Thrombogenic Modification of Small-Diameter Microfibrous Vascular Grafts,” Arterioscler., Thromb., Vasc. Biol., 30(8), pp. 1621–1627. [CrossRef]
Guo, H.-F. , Dai, W.-W. , Qian, D.-H. , Qin, Z.-X. , Lei, Y. , Hou, X.-Y. , and Wen, C. , 2017, “ A Simply Prepared Small-Diameter Artificial Blood Vessel That Promotes In Situ Endothelialization,” Acta Biomater., 54, pp. 107–116. [CrossRef] [PubMed]
Williams, S. K. , Kleinert, L. B. , and Patula-Steinbrenner, V. , 2011, “ Accelerated Neovascularization and Endothelialization of Vascular Grafts Promoted by Covalently-Bound Laminin Type 1,” J. Biomed. Mater. Res., Part A, 99(1), pp. 67–73. [CrossRef]
Heath, D. E. , Kobe, C. , Jones, D. , Moldovan, N. I. , and Cooper, S. L. , 2013, “ In Vitro Endothelialization of Electrospun Terpolymer Scaffolds: Evaluation of Scaffold Type and Cell Source,” Tissue Eng. Part A, 19(1–2), pp. 79–90. [CrossRef] [PubMed]
Melchiorri, A. J. , Bracaglia, L. G. , Kimerer, L. K. , Hibino, N. , and Fisher, J. P. , 2016, “ In Vitro Endothelialization of Biodegradable Vascular Grafts Via Endothelial Progenitor Cell Seeding and Maturation in a Tubular Perfusion System Bioreactor,” Tissue Eng. Part C, 22(7), pp. 663–670. [CrossRef]
Rupnick, M. A. , Hubbard, F. A. , Pratt, K. , Jarrell, B. E. , and Williams, S. K. , 1989, “ Endothelialization of Vascular Prosthetic Surfaces After Seeding or Sodding With Human Microvascular Endothelial Cells,” J. Vasc. Surg., 9(6), pp. 788–795. [CrossRef] [PubMed]
Trubel, W. , Moritz, A. , Schima, H. , Raderer, F. , Scherer, R. , Ullrich, R. , Losert, U. , and Polterauer, P. , 1994, “ Compliance and Formation of Distal Anastomotic Intimal Hyperplasia in Dacron Mesh Tube Constricted Veins Used as Arterial Bypass Grafts,” ASAIO J., 40(3), pp. M273–M278. [CrossRef] [PubMed]
Trubel, W. , Schima, H. , Moritz, A. , Raderer, F. , Windisch, A. , Ullrich, R. , Windberger, U. , Losert, U. , and Polterauer, P. , 1995, “ Compliance Mismatch and Formation of Distal Anastomotic Intimal Hyperplasia in Externally Stiffened and Lumen-Adapted Venous Grafts,” Eur. J. Vasc. Endovascular Surg., 10(4), pp. 415–423. [CrossRef]
Ballyk, P. D. , Walsh, C. , Butany, J. , and Ojha, M. , 1997, “ Compliance Mismatch May Promote Graft-Artery Intimal Hyperplasia by Altering Suture-Line Stresses,” J. Biomech., 31(3), pp. 229–237. [CrossRef]
Xu, J. , and Shi, G.-P. , 2014, “ Vascular Wall Extracellular Matrix Proteins and Vascular Diseases,” Biochim. Biophys. Acta, 1842(11), pp. 2106–2119. [CrossRef] [PubMed]
Aydin, S. , Aydin, S. , Eren, M. N. , Sahin, İ. , Yilmaz, M. , Kalayci, M. , and Gungor, O. , 2013, “ The Cardiovascular System and the Biochemistry of Grafts Used in Heart Surgery,” SpringerPlus, 2(1), p. 612. [CrossRef] [PubMed]
Wagenseil, J. E. , and Mecham, R. P. , 2009, “ Vascular Extracellular Matrix and Arterial Mechanics,” Physiol. Rev., 89(3), pp. 957–989. [CrossRef] [PubMed]
Xing, Q. , Qian, Z. , Tahtinen, M. , Yap, A. H. , Yates, K. , and Zhao, F. , 2017, “ Aligned Nanofibrous Cell-Derived Extracellular Matrix for Anisotropic Vascular Graft Construction,” Adv. Healthcare Mater., 6(10), (epub).
Kim, S. H. , Turnbull, J. , and Guimond, S. , 2011, “ Extracellular Matrix and Cell Signalling: The Dynamic Cooperation of Integrin, Proteoglycan and Growth Factor Receptor,” J. Endocrinol., 209(2), pp. 139–151. [CrossRef] [PubMed]
Schultz, G. S. , and Wysocki, A. , 2009, “ Interactions Between Extracellular Matrix and Growth Factors in Wound Healing,” Wound Repair Regener., 17(2), pp. 153–162. [CrossRef]
Ma, H. , Hu, J. , and Ma, P. X. , 2010, “ Polymer Scaffolds for Small-Diameter Vascular Tissue Engineering,” Adv. Funct. Mater., 20(17), pp. 2833–2841. [CrossRef] [PubMed]
Nieponice, A. , Soletti, L. , Guan, J. , Hong, Y. , Gharaibeh, B. , Maul, T. M. , Huard, J. , Wagner, W. R. , and Vorp, D. A. , 2010, “ In Vivo Assessment of a Tissue-Engineered Vascular Graft Combining a Biodegradable Elastomeric Scaffold and Muscle-Derived Stem Cells in a Rat Model,” Tissue Eng. Part A, 16(4), pp. 1215–1223. [CrossRef] [PubMed]
Wang, W. , Hu, J. , He, C. , Nie, W. , Feng, W. , Qiu, K. , Zhou, X. , Gao, Y. , and Wang, G. , 2015, “ Heparinized PLLA/PLCL Nanofibrous Scaffold for Potential Engineering of Small-Diameter Blood Vessel: Tunable Elasticity and Anticoagulation Property,” J. Biomed. Mater. Res., Part A, 103(5), pp. 1784–1797. [CrossRef]
Jing, X. , Mi, H. Y. , Salick, M. R. , Cordie, T. M. , Peng, X. F. , and Turng, L. S. , 2015, “ Electrospinning Thermoplastic Polyurethane/Graphene Oxide Scaffolds for Small Diameter Vascular Graft Applications,” Mater. Sci. Eng., C, 49, pp. 40–50. [CrossRef]
Tan, Z. , Wang, H. , Gao, X. , Liu, T. , and Tan, Y. , 2016, “ Composite Vascular Grafts With High Cell Infiltration by Co-Electrospinning,” Mater. Sci. Eng., C, 67, pp. 369–377. [CrossRef]
Woods, I. , and Flanagan, T. C. , 2014, “ Electrospinning of Biomimetic Scaffolds for Tissue-Engineered Vascular Grafts: Threading The Path,” Expert Rev. Cardiovasc. Ther., 12(7), pp. 815–832. [CrossRef] [PubMed]
Li, Z. , and Wang, C. , 2013, “ Effects of Working Parameters on Electrospinning,” One-Dimensional Nanostructures: Electrospinning Technique and Unique Nanofibers, Z. Li , and C. Wang , eds., Springer, Berlin, pp. 15–28.
Hasan, A. , Memic, A. , Annabi, N. , Hossain, M. , Paul, A. , Dokmeci, M. R. , Dehghani, F. , and Khademhosseini, A. , 2014, “ Electrospun Scaffolds for Tissue Engineering of Vascular Grafts,” Acta Biomater., 10(1), pp. 11–25. [CrossRef] [PubMed]
Yao, J. , Bastiaansen, C. , and Peijs, T. , 2014, “ High Strength and High Modulus Electrospun Nanofibers,” Fibers, 2(2), pp. 158–186.
Hong, Y. , Ye, S.-H. , Nieponice, A. , Soletti, L. , Vorp, D. A. , and Wagner, W. R. , 2009, “ A Small Diameter, Fibrous Vascular Conduit Generated From a Poly(Ester Urethane)Urea and Phospholipid Polymer Blend,” Biomaterials, 30(13), pp. 2457–2467. [CrossRef] [PubMed]
Awad, N. K. , Niu, H. , Ali, U. , Morsi, Y. S. , and Lin, T. , 2018, “ Electrospun Fibrous Scaffolds for Small-Diameter Blood Vessels: A Review,” Membranes, 8(1), p. E15.
Punnakitikashem, P. , Truong, D. , Menon, J. U. , Nguyen, K. T. , and Hong, Y. , 2014, “ Electrospun Biodegradable Elastic Polyurethane Scaffolds With Dipyridamole Release for Small Diameter Vascular Grafts,” Acta Biomater., 10(11), pp. 4618–4628. [CrossRef] [PubMed]
Jha, B. S. , Ayres, C. E. , Bowman, J. R. , Telemeco, T. A. , Sell, S. A. , Bowlin, G. L. , and Simpson, D. G. , 2011, “ Electrospun Collagen: A Tissue Engineering Scaffold With Unique Functional Properties in a Wide Variety of Applications,” J. Nanomater., 2011, p. 15. [CrossRef]
Matthews, J. A. , Wnek, G. E. , Simpson, D. G. , and Bowlin, G. L. , 2002, “ Electrospinning of Collagen Nanofibers,” Biomacromolecules, 3(2), pp. 232–238. [CrossRef] [PubMed]
Le Corre-Bordes, D. , Hofman, K. , and Hall, B. , 2018, “ Guide to Electrospinning Denatured Whole Chain Collagen From Hoki Fish Using Benign Solvents,” Int. J. Biol. Macromol., 112, pp. 1289–1299. [CrossRef] [PubMed]
Buttafoco, L. , Kolkman, N. G. , Engbers-Buijtenhuijs, P. , Poot, A. A. , Dijkstra, P. J. , Vermes, I. , and Feijen, J. , 2006, “ Electrospinning of Collagen and Elastin for Tissue Engineering Applications,” Biomaterials, 27(5), pp. 724–734. [CrossRef] [PubMed]
Rnjak-Kovacina, J. , Wise, S. G. , Li, Z. , Maitz, P. K. M. , Young, C. J. , Wang, Y. , and Weiss, A. S. , 2012, “ Electrospun Synthetic Human Elastin:Collagen Composite Scaffolds for Dermal Tissue Engineering,” Acta Biomater., 8(10), pp. 3714–3722. [CrossRef] [PubMed]
Boland, E. D. , Matthews, J. A. , Pawlowski, K. J. , Simpson, D. G. , Wnek, G. E. , and Bowlin, G. L. , 2004, “ Electrospinning Collagen and Elastin: Preliminary Vascular Tissue Engineering,” Front Biosci., 9(2), pp. 1422–1432 https://www.researchgate.net/publication/5242291_Electrospinning_collagen_and_elastin_Preliminary_vascular_tissue_engineering.
Boland, E. D. , Matthews, J. A. , Pawlowski, K. J. , Simpson, D. G. , Wnek, G. E. , and Bowlin, G. L. , 2004, “ Electrospinning Collagen and Elastin: Preliminary Vascular Tissue Engineering,” Front. Biosci., 9(1–3), pp. 1422–1432. [CrossRef] [PubMed]
Zeugolis, D. I. , Khew, S. T. , Yew, E. S. , Ekaputra, A. K. , Tong, Y. W. , Yung, L. Y. , Hutmacher, D. W. , Sheppard, C. , and Raghunath, M. , 2008, “ Electro-Spinning of Pure Collagen Nano-Fibres—Just an Expensive Way to Make Gelatin?,” Biomaterials, 29(15), pp. 2293–2305. [CrossRef] [PubMed]
Tamimi, E. , Ardila, D. C. , Haskett, D. G. , Doetschman, T. , Slepian, M. J. , Kellar, R. S. , and Vande Geest, J. P. , 2015, “ Biomechanical Comparison of Glutaraldehyde-Crosslinked Gelatin Fibrinogen Electrospun Scaffolds to Porcine Coronary Arteries,” ASME J. Biomech. Eng., 138(1), p. 011001. [CrossRef]
Harrison, S. , Tamimi, E. , Uhlorn, J. , Leach, T. , and Vande Geest, J. P. , 2016, “ Computationally Optimizing the Compliance of a Biopolymer Based Tissue Engineered Vascular Graft,” ASME J. Biomech. Eng., 138(1), p. 014505. [CrossRef]
Wise, S. G. , Yeo, G. C. , Hiob, M. A. , Rnjak-Kovacina, J. , Kaplan, D. L. , Ng, M. K. C. , and Weiss, A. S. , 2014, “ Tropoelastin: A Versatile, Bioactive Assembly Module,” Acta Biomater., 10(4), pp. 1532–1541. [CrossRef] [PubMed]
Senior, R. M. , Griffin, G. L. , and Mecham, R. P. , 1980, “ Chemotactic Activity of Elastin-Derived Peptides,” J. Clin. Invest., 66(4), pp. 859–862. [CrossRef] [PubMed]
Wise, S. G. , and Weiss, A. S. , 2009, “ Tropoelastin,” Int. J. Biochem. Cell Biol., 41(3), pp. 494–497. [CrossRef] [PubMed]
Indik, Z. , Abrams, W. R. , Kucich, U. , Gibson, C. W. , Mecham, R. P. , and Rosenbloom, J. , 1990, “ Production of Recombinant Human Tropoelastin: Characterization and Demonstration of Immunologic and Chemotactic Activity,” Arch. Biochem. Biophys., 280(1), pp. 80–86. [CrossRef] [PubMed]
Machula, H. , Ensley, B. , and Kellar, R. , 2014, “ Electrospun Tropoelastin for Delivery of Therapeutic Adipose-Derived Stem Cells to Full-Thickness Dermal Wounds,” Adv. Wound Care, 3(5), pp. 367–375. [CrossRef]
McKenna, K. A. , Gregory, K. W. , Sarao, R. C. , Maslen, C. L. , Glanville, R. W. , and Hinds, M. T. , 2012, “ Structural and Cellular Characterization of Electrospun Recombinant Human Tropoelastin Biomaterials,” J. Biomater. Appl., 27(2), pp. 219–230. [CrossRef] [PubMed]
McKenna, K. A. , Hinds, M. T. , Sarao, R. C. , Wu, P.-C. , Maslen, C. L. , Glanville, R. W. , Babcock, D. , and Gregory, K. W. , 2012, “ Mechanical Property Characterization of Electrospun Recombinant Human Tropoelastin for Vascular Graft Biomaterials,” Acta Biomater., 8(1), pp. 225–233. [CrossRef] [PubMed]
Nivison-Smith, L. , Rnjak, J. , and Weiss, A. S. , 2010, “ Synthetic Human Elastin Microfibers: Stable Cross-Linked Tropoelastin and Cell Interactive Constructs for Tissue Engineering Applications,” Acta Biomater., 6(2), pp. 354–359. [CrossRef] [PubMed]
Sell, S. A. , Francis, M. P. , Garg, K. , McClure, M. J. , Simpson, D. G. , and Bowlin, G. L. , 2008, “ Cross-Linking Methods of Electrospun Fibrinogen Scaffolds for Tissue Engineering Applications,” Biomed. Mater., 3(4), p. 045001. [CrossRef] [PubMed]
Luo, X. , Guo, Z. , He, P. , Chen, T. , Li, L. , Ding, S. , and Li, H. , 2018, “ Study on Structure, Mechanical Property and Cell Cytocompatibility of Electrospun Collagen Nanofibers Crosslinked by Common Agents,” Int. J. Biol. Macromol., 113, pp. 476–486. [CrossRef] [PubMed]
Gough, J. E. , Scotchford, C. A. , and Downes, S. , 2002, “ Cytotoxicity of Glutaraldehyde Crosslinked Collagen/Poly(Vinyl Alcohol) Films Is by the Mechanism of Apoptosis,” J. Biomed. Mater. Res., 61(1), pp. 121–130. [CrossRef] [PubMed]
Kim, K. M. , Herrera, G. A. , and Battarbee, H. D. , 1999, “ Role of Glutaraldehyde in Calcification of Porcine Aortic Valve Fibroblasts,” Am. J. Pathol., 154(3), pp. 843–852. [CrossRef] [PubMed]
Chanda, J. , Kondoh, K. , Ijima, K. , Matsukawa, M. , and Kuribayashi, R. , 1998, “ In Vitro and In Vivo Calcification of Vascular Bioprostheses,” Biomaterials, 19(18), pp. 1651–1656. [CrossRef] [PubMed]
Golomb, G. , Schoen, F. J. , Smith, M. S. , Linden, J. , Dixon, M. , and Levy, R. J. , 1987, “ The Role of Glutaraldehyde-Induced Cross-Links in Calcification of Bovine Pericardium Used in Cardiac Valve Bioprostheses,” Am. J. Pathol., 127(1), pp. 122–130. [PubMed]
Lim, H. G. , Kim, S. H. , Choi, S. Y. , and Kim, Y. J. , 2012, “ Anticalcification Effects of Decellularization, Solvent, and Detoxification Treatment for Genipin and Glutaraldehyde Fixation of Bovine Pericardium,” Eur. J. Cardio-Thorac. Surg., 41(2), pp. 383–390. [CrossRef]
Kawahara, J-I. , Ishikawa, K. , Uchimaru, T. , and Takaya, H. , 1997, “ Chemical Cross-Linking by Glutaraldehyde Between Amino Groups: Its Mechanism and Effects,” Polymer Modification, G. Swift , C. E. Carraher , and C. N. Bowman , eds., Springer, Boston, MA, pp. 119–131.
Sung, H.-W. , Huang, R.-N. , Huang, L. L. H. , Tsai, C.-C. , and Chiu, C.-T. , 1998, “ Feasibility Study of a Natural Crosslinking Reagent for Biological Tissue Fixation,” J. Biomed. Mater. Res., 42(4), pp. 560–567. [CrossRef] [PubMed]
Chang, Y. , Tsai, C. C. , Liang, H. C. , and Sung, H. W. , 2001, “ Reconstruction of the Right Ventricular Outflow Tract With a Bovine Jugular Vein Graft Fixed With a Naturally Occurring Crosslinking Agent (Genipin) in a Canine Model,” J. Thorac. Cardiovasc. Surg., 122(6), pp. 1208–1218. [CrossRef] [PubMed]
Sisson, K. , Zhang, C. , Farach-Carson, M. C. , Chase, D. B. , and Rabolt, J. F. , 2009, “ Evaluation of Cross-Linking Methods for Electrospun Gelatin on Cell Growth and Viability,” Biomacromolecules, 10(7), pp. 1675–1680. [CrossRef] [PubMed]
Balasubramanian, P. , Prabhakaran, M. P. , Kai, D. , and Ramakrishna, S. , 2013, “ Human Cardiomyocyte Interaction With Electrospun Fibrinogen/Gelatin Nanofibers for Myocardial Regeneration,” J. Biomater. Sci. Polym. Ed., 24(14), pp. 1660–1675. [CrossRef] [PubMed]
Kumar, V. A. , Caves, J. M. , Haller, C. A. , Dai, E. , Liu, L. , Grainger, S. , and Chaikof, E. L. , 2013, “ Acellular Vascular Grafts Generated From Collagen and Elastin Analogs,” Acta Biomater., 9(9), pp. 8067–8074. [CrossRef] [PubMed]
Wise, S. G. , Byrom, M. J. , Waterhouse, A. , Bannon, P. G. , Ng, M. K. C. , and Weiss, A. S. , 2011, “ A Multilayered Synthetic Human Elastin/Polycaprolactone Hybrid Vascular Graft With Tailored Mechanical Properties,” Acta Biomater., 7(1), pp. 295–303. [CrossRef] [PubMed]
Brown, J. H. , Das, P. , DiVito, M. D. , Ivancic, D. , Poh Tan, L. , and Wertheim, J. A. , 2018, “ Nanofibrous PLGA Electrospun Scaffolds Modified With Type I Collagen Influence Hepatocyte Function and Support Viability In Vivo,” Acta Biomater., 73, pp. 217–227. [CrossRef] [PubMed]
Yao, Q. , Zhang, W. , Hu, Y. , Chen, J. , Shao, C. , Fan, X. , and Fu, Y. , 2017, “ Electrospun Collagen/Poly(L-Lactic Acid-Co-Epsilon-Caprolactone) Scaffolds for Conjunctival Tissue Engineering,” Exp. Ther. Med., 14(5), pp. 4141–4147. [PubMed]
Han, J. , Lazarovici, P. , Pomerantz, C. , Chen, X. , Wei, Y. , and Lelkes, P. I. , 2011, “ Co-Electrospun Blends of PLGA, Gelatin, and Elastin as Potential Nonthrombogenic Scaffolds for Vascular Tissue Engineering,” Biomacromolecules, 12(2), pp. 399–408. [CrossRef] [PubMed]
Zhang, Q. , Lv, S. , Lu, J. , Jiang, S. , and Lin, L. , 2015, “ Characterization of Polycaprolactone/Collagen Fibrous Scaffolds by Electrospinning and Their Bioactivity,” Int. J. Biol. Macromol., 76, pp. 94–101. [CrossRef] [PubMed]
Hackett, J. M. , Dang, T. T. , Tsai, E. C. , and Cao, X. , 2010, “ Electrospun Biocomposite Polycaprolactone/Collagen Tubes as Scaffolds for Neural Stem Cell Differentiation,” Materials, 3(6), pp. 3714–3728. [CrossRef]
Swindle-Reilly, K. E. , Paranjape, C. S. , and Miller, C. A. , 2014, “ Electrospun Poly(Caprolactone)-Elastin Scaffolds for Peripheral Nerve Regeneration,” Prog. Biomater., 3, p. 20. [CrossRef] [PubMed]
Annabi, N. , Fathi, A. , Mithieux, S. M. , Martens, P. , Weiss, A. S. , and Dehghani, F. , 2011, “ The Effect of Elastin on Chondrocyte Adhesion and Proliferation on Poly (ɛ-Caprolactone)/Elastin Composites,” Biomaterials, 32(6), pp. 1517–1525. [CrossRef] [PubMed]
Liu, Y. , Xu, Y. , Wang, Z. , Wen, D. , Zhang, W. , Schmull, S. , Li, H. , Chen, Y. , and Xue, S. , 2016, “ Electrospun Nanofibrous Sheets of Collagen/Elastin/Polycaprolactone Improve Cardiac Repair After Myocardial Infarction,” Am. J. Transl. Res., 8(4), pp. 1678–1694. [PubMed]
Yang, G. , Lin, H. , Rothrauff, B. B. , Yu, S. , and Tuan, R. S. , 2016, “ Multilayered Polycaprolactone/Gelatin Fiber-Hydrogel Composite for Tendon Tissue Engineering,” Acta Biomater., 35, pp. 68–76. [CrossRef] [PubMed]
Abbott, W. M. , Megerman, J. , Hasson, J. E. , L'Italien, G. , and Warnock, D. F. , 1987, “ Effect of Compliance Mismatch on Vascular Graft Patency,” J. Vasc. Surg., 5(2), pp. 376–382. [CrossRef] [PubMed]
Matsumoto, T. , Naiki, T. , and Hayashi, K. , 1992, “ Flow Visualization Analysis in a Model of Artery-Graft Anastomosis,” Bio-Med. Mater. Eng., 2(4), pp. 171–183.
Stewart, S. F. C. , and Lyman, D. J. , 2004, “ Effects of an Artery/Vascular Graft Compliance Mismatch on Protein Transport: A Numerical Study,” Ann. Biomed. Eng., 32(7), pp. 991–1006. [CrossRef] [PubMed]
Chandran, K. B. , Gao, D. , Han, G. , Baraniewski, H. , and Corson, J. D. , 1992, “ Finite-Element Analysis of Arterial Anastomoses With Vein, Dacron and PTFE Grafts,” Med. Biol. Eng. Comput., 30(4), pp. 413–418. [CrossRef] [PubMed]
Rickard, R. F. , Meyer, C. , and Hudson, D. A. , 2009, “ Computational Modeling of Microarterial Anastomoses With Size Discrepancy (Small-to-Large),” J. Surg. Res., 153(1), pp. 1–11. [CrossRef] [PubMed]
Haskett, D. , Speicher, E. , Fouts, M. , Larson, D. , Azhar, M. , Utzinger, U. , and Vande Geest, J. , 2012, “ The Effects of Angiotensin II on the Coupled Microstructural and Biomechanical Response of C57BL/6 Mouse Aorta,” J. Mech., 45(2), pp. 722–729.
Haskett, D. , Azhar, M. , Utzinger, U. , and Vande Geest, J. , 2013, “ Progressive Alterations in Microstructural Organization and Biomechanical Response in the ApoE Mouse Model of Aneurysm,” Biomatter, 3(3), p. e24648. [CrossRef] [PubMed]
Haskett, D. , Doyle, J. J. , Gard, C. , Chen, H. , Ball, C. , Estabrook, M. A. , Encinas, A. C. , Dietz, H. C. , Utzinger, U. , Vande Geest, J. P. , and Azhar, M. , 2012, “ Altered Tissue Behavior of Non-Aneurysmal Descending Thoracic Aorta in the Mouse Model of Marfan Syndrome,” Cell Tissue Res., 347(1), pp. 267–277. [CrossRef] [PubMed]
Keyes, J. T. , Borowicz, S. M. , Rader, J. H. , Utzinger, U. , Azhar, M. , and Vande Geest, J. P. , “ Design and Demonstration of a Microbiaxial Optomechanical Device for Multiscale Characterization of Soft Biological Tissues With Two-Photon Microscopy,” Microsc. Microanal., 17(2), pp. 167–175. [CrossRef] [PubMed]
Keyes, J. T. , Lockwood, D. R. , Utzinger, U. , Montilla, L. G. , Witte, R. S. , and Vande Geest, J. , 2013, “ Comparisons of Planar and Tubular Biaxial Tensile Testing Protocols of the Same Porcine Coronary Arteries,” Ann. Biomed. Eng., 41(7), pp. 1579–1591. [CrossRef] [PubMed]
Keyes, J. T. , Haskett, D. G. , Utzinger, U. , Azhar, M. , and Vande Geest, J. P. , 2011, “ Adaptation of a Two-Photon-Microscope-Interfacing Planar Biaxial Testing Device for the Microstructural and Macroscopic Characterization of Small Tubular Tissue Specimens,” ASME J. Biomech. Eng., 133(7), p. 075001. [CrossRef]
Fung, Y. C. ,1982, Biomechanics Mechanical Properties of Living Tissues, Springer-Verlag, New York.
Tai, N. R. , Salacinski, H. J. , Edwards, A. , Hamilton, G. , and Seifalian, A. M. , 2000, “ Compliance Properties of Conduits Used in Vascular Reconstruction,” Br. J. Surg., 87(11), pp. 1516–1524. [CrossRef] [PubMed]
Al-Jarrah, R. , 1984, “ On the Lagrange Interpolation Polynomials of Entire Functions,” J. Approximation Theory, 41(2), pp. 170–178. [CrossRef]
Huang, R. , Gao, X. , Wang, J. , Chen, H. , Tong, C. , Tan, Y. , and Tan, Z. , 2018, “ Triple-Layer Vascular Grafts Fabricated by Combined E-Jet 3D Printing and Electrospinning,” Ann. Biomed. Eng., 46(9), pp. 1254–1266. [CrossRef] [PubMed]
Yu, E. , Mi, H. Y. , Zhang, J. , Thomson, J. A. , and Turng, L. S. , 2018, “ Development of Biomimetic Thermoplastic Polyurethane/Fibroin Small-Diameter Vascular Grafts Via a Novel Electrospinning Approach,” J Biomed Mater Res A., 106(4), pp. 985–996. [CrossRef] [PubMed]
Nezarati, R. M. , Eifert, M. B. , Dempsey, D. K. , and Cosgriff-Hernandez, E. , 2015, “ Electrospun Vascular Grafts With Improved Compliance Matching to Native Vessels,” J. Biomed. Mater. Res., Part B, 103(2), pp. 313–323. [CrossRef]
Salacinski, H. J. , Goldner, S. , Giudiceandrea, A. , Hamilton, G. , Seifalian, A. M. , Edwards, A. , and Carson, R. J. , 2001, “ The Mechanical Behavior of Vascular Grafts: A Review,” J. Biomater. Appl., 15(3), pp. 241–278. [CrossRef] [PubMed]
Soletti, L. , Hong, Y. , Guan, J. , Stankus, J. J. , El-Kurdi, M. S. , Wagner, W. R. , and Vorp, D. A. , 2010, “ A Bilayered Elastomeric Scaffold for Tissue Engineering of Small Diameter Vascular Grafts,” Acta Biomater., 6(1), pp. 110–122. [CrossRef] [PubMed]
Soletti, L. , Nieponice, A. , Hong, Y. , Ye, S.-H. , Stankus, J. J. , Wagner, W. R. , and Vorp, D. A. , 2011, “ In Vivo Performance of a Phospholipid-Coated Bioerodable Elastomeric Graft for Small-Diameter Vascular Applications,” J. Biomed. Mater. Res., Part A, 96(2), pp. 436–448.
Jankowska, M. A. , Bartkowiak-Jowsa, M. , and Bedzinski, R. , 2015, “ Experimental and Constitutive Modeling Approaches for a Study of Biomechanical Properties of Human Coronary Arteries,” J. Mech. Behav. Biomed. Mater., 50, pp. 1–12. [CrossRef] [PubMed]
Szafron, J. M. , Breuer, C. K. , Wang, Y. , and Humphrey, J. D. , 2017, “ Stress Analysis-Driven Design of Bilayered Scaffolds for Tissue-Engineered Vascular Grafts,” J. Biomech. Eng., 139(12), (epub).
Castillo-Cruz, O. , Pérez-Aranda, C. , Gamboa, F. , Cauich-Rodríguez, J. V. , Mantovani, D. , and Avilés, F. , 2018, “ Prediction of Circumferential Compliance and Burst Strength of Polymeric Vascular Grafts,” J. Mech. Behav. Biomed. Mater., 79, pp. 332–340. [CrossRef] [PubMed]
Qasim, S. B. , Najeeb, S. , Delaine-Smith, R. M. , Rawlinson, A. , and Ur Rehman, I. , 2017, “ Potential of Electrospun Chitosan Fibers as a Surface Layer in Functionally Graded GTR Membrane for Periodontal Regeneration,” Dental Mater., 33(1), pp. 71–83. [CrossRef]
Gnavi, S. , Fornasari, B. E. , Tonda-Turo, C. , Laurano, R. , Zanetti, M. , Ciardelli, G. , and Geuna, S. , 2015, “ The Effect of Electrospun Gelatin Fibers Alignment on Schwann Cell and Axon Behavior and Organization in the Perspective of Artificial Nerve Design,” Int. J. Mol. Sci., 16(6), pp. 12925–12942. [CrossRef] [PubMed]
Ayres, C. , Bowlin, G. L. , Henderson, S. C. , Taylor, L. , Shultz, J. , Alexander, J. , Telemeco, T. A. , and Simpson, D. G. , 2006, “ Modulation of Anisotropy in Electrospun Tissue-Engineering Scaffolds: Analysis of Fiber Alignment by the Fast Fourier Transform,” Biomaterials, 27(32), pp. 5524–5534. [CrossRef] [PubMed]

Figures

Grahic Jump Location
Fig. 1

(a) Representation of the electrospinning setup with two translating positively charged dispensing nozzles and a rotating grounded mandrel, (b) IME Technologies commercial electrospinning chamber, and (c) graphical representation of construct cross section showing the alternating G:PCL and T:PCL layers

Grahic Jump Location
Fig. 2

A diagram illustrating the optimization scheme used in this study

Grahic Jump Location
Fig. 3

Predicted circumferential stress–strain response surfaces for (left) G:PCL ratios and (right) T:PCL ratios of 80:20, 70:30, 60:40, 50:50, 40:60, 30:70, and 20:80

Grahic Jump Location
Fig. 4

Predicted axial stress–strain response surfaces for (left) G:PCL ratios and (right) T:PCL ratios of 80:20, 70:30, 60:40, 50:50, 40:60, 30:70, and 20:80

Grahic Jump Location
Fig. 5

(a) 4× and 20× fluorescence images of representative samples of the hypocompliant, isocompliant, and hypercompliant optimized grafts and rat aorta. Scale bar indicates 50 μm for all images. (b) Inner diameter and (c) total thickness of the hypocompliant, isocompliant, and hypercompliant optimized grafts compared to rat aorta. Error bars indicate one standard deviation. Asterisk indicates statistical significance of difference compared to rat aorta using two-sample two-tailed t-test (p-value < 0.05).

Grahic Jump Location
Fig. 6

Target and actual compliance values of the hypocompliant, isocompliant, and hypercompliant optimized grafts compared to rat aorta compliance values. Error bars indicate one standard deviation. Asterisk indicates significant difference to target compliance value using one sample two-tailed t-test.

Grahic Jump Location
Fig. 7

Average circumferential stress–strain Fung-fitted response surface plots for the hypocompliant, isocompliant, and hypercompliant optimized grafts as well as for rat aorta. Averaged data points from all replicates are displayed for fit evaluation and visualization.

Grahic Jump Location
Fig. 8

Average axial stress–strain Fung-fitted response surface plots for the hypocompliant, isocompliant, and hypercompliant optimized grafts as well as for rat aorta. Averaged data points from all replicates are displayed for fit evaluation and visualization.

Tables

Errata

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In