Technical Brief

Numerical Study of Incomplete Stent Apposition Caused by Deploying Undersized Stent in Arteries With Elliptical Cross Sections

[+] Author and Article Information
Bo Jiang

Department of Mechanical Engineering,
Melbourne School of Engineering,
The University of Melbourne,
Melbourne, Victoria 3010, Australia
e-mail: bjiang1@student.unimelb.edu.au

Vikas Thondapu

Department of Medicine,
Faculty of Medicine, Dentistry and Health Sciences,
The University of Melbourne,
Melbourne, Victoria 3010, Australia;
Department of Mechanical Engineering,
Melbourne School of Engineering,
The University of Melbourne,
Melbourne, Victoria 3010, Australia
e-mail: vthondapu@student.unimelb.edu.au

Eric K. W. Poon

Department of Mechanical Engineering,
Melbourne School of Engineering,
The University of Melbourne,
Melbourne, Victoria 3010, Australia
e-mail: epoon@unimelb.edu.au

Peter Barlis

Department of Medicine,
Faculty of Medicine, Dentistry and Health Sciences,
The University of Melbourne,
Melbourne, Victoria 3010, Australia
e-mail: pbarlis@unimelb.edu.au

Andrew S. H. Ooi

Department of Mechanical Engineering,
Melbourne School of Engineering,
The University of Melbourne,
Melbourne, Victoria 3010, Australia
e-mail: a.ooi@unimelb.edu.au

1Corresponding author.

Manuscript received June 15, 2018; final manuscript received February 6, 2019; published online March 25, 2019. Assoc. Editor: Alison Marsden.

J Biomech Eng 141(5), 054501 (Mar 25, 2019) (7 pages) Paper No: BIO-18-1283; doi: 10.1115/1.4042899 History: Received June 15, 2018; Revised February 06, 2019

Incomplete stent apposition (ISA) is one of the causes leading to poststent complications, which can be found when an undersized or an underexpanded stent is deployed at lesions. The previous research efforts have focused on ISA in idealized coronary arterial geometry with circular cross section. However, arterial cross section eccentricity plays an important role in both location and severity of ISA. Computational fluid dynamics (CFD) simulations are carried out to systematically study the effects of ISA in arteries with elliptical cross section, as such stents are partially embedded on the minor axis sides of the ellipse and malapposed elsewhere. Overall, ISA leads to high time-averaged wall shear stress (TAWSS) at the proximal end of the stent and low TAWSS at the ISA transition region and the distal end. Shear rate depends on both malapposition distance and blood stream locations, which is found to be significantly higher at the inner stent surface than the outer surface. The proximal high shear rate signifies increasing possibility in platelet activation, when coupled with low TAWSS at the transition and distal regions which may indicate a nidus for in-stent thrombosis.

Copyright © 2019 by ASME
Your Session has timed out. Please sign back in to continue.


Lewis, G. , 2008, “ Materials, Fluid Dynamics, and Solid Mechanics Aspects of Coronary Artery Stents: A State-of-the-Art Review,” J. Biomed. Mater. Res. Part B Appl. Biomater., 86(2), pp. 569–590. [CrossRef] [PubMed]
O’Brien, C. C. , Lopes, A. C. , Kolandaivelu, K. , Kunio, M. , Brown, J. , Kolachalama, V. B. , Conway, C. , Bailey, L. , Markham, P. , Costa, M. , Ware, J. , and Edelman, E. R. , 2016, “ Vascular Response to Experimental Stent Malapposition and Under-Expansion,” Ann. Biomed. Eng., 44(7), pp. 1–10. [CrossRef] [PubMed]
Ozaki, Y. , Okumura, M. , Ismail, T. F. , Naruse, H. , Hattori, K. , Kan, S. , Ishikawa, M. , Kawai, T. , Takagi, Y. , Ishii, J. , Prati, F. , and Serruys, P. W. , 2010, “ The Fate of Incomplete Stent Apposition With Drug-Eluting Stents: An Optical Coherence Tomography-Based Natural History Study,” Eur. Heart J., 31(12), pp. 1470–1476. [CrossRef] [PubMed]
Gutiérrez-Chico, J. L. , Regar, E. , NüesC, H. E. , Okamura, T. , Wykrzykowska, J. , Di Mario, C. , Windecker, S. , Van, G. A. , Gobbens, P. , Jüni, P. , and Serruys, P. W. , 2011, “ Delayed Coverage in Malapposed and Side-Branch Struts With Respect to Well-Apposed Struts in Drug-Eluting Stents: In Vivo Assessment With Optical Coherence Tomography,” Circulation, 124(5), pp. 612–623. [CrossRef] [PubMed]
Gutiérrez-Chico, J. L. , Wykrzykowska, J. , Nüesch, E. , Van Geuns, R. J. , Koch, K. T. , Koolen, J. J. , Di Mario, C. , Windecker, S. , Van Es, G. A. , Gobbens, P. , Jüni, P. , Regar, E. , and Serruys, P. W. , 2012, “ Vascular Tissue Reaction to Acute Malapposition in Human Coronary Arteries Sequential Assessment With Optical Coherence Tomography,” Circ. Cardiovasc. Interv., 5(1), pp. 20–29. [CrossRef] [PubMed]
Foin, N. , Lee, R. D. , Torii, R. , Guitierrez-Chico, J. L. , Mattesini, A. , Nijjer, S. , Sen, S. , Petraco, R. , Davies, J. E. , Di Mario, C. , Joner, M. , Virmani, R. , and Wong, P. , 2014, “ Impact of Stent Strut Design in Metallic Stents and Biodegradable Scaffolds,” Int. J. Cardiol., 177(3), pp. 800–808. [CrossRef] [PubMed]
Cook, S. , Eshtehardi, P. , Kalesan, B. , Raber, L. , Wenaweser, P. , Togni, M. , Moschovitis, A. , Vogel, R. , Seiler, C. , Eberli, F. R. , Luscher, T. , Meier, B. , Juni, P. , and Windecker, S. , 2012, “ Impact of Incomplete Stent Apposition on Long-Term Clinical Outcome After Drug-Eluting Stent Implantation,” Eur. Heart J., 33(11), pp. 1334–1343. [CrossRef] [PubMed]
Malek, A. M. , Alper, S. L. , and Izumo, S. , 1999, “ Hemodynamic Shear Stress and Its Role in Atherosclerosis,” JAMA, 282(21), pp. 2035–2042. [CrossRef] [PubMed]
Foin, N. , Gutiérrez-Chico, J. L. , Nakatani, S. , Torii, R. , Bourantas, C. V. , Sen, S. , Nijjer, S. , Petraco, R. , Kousera, C. , Ghione, M. , Onuma, Y. , Garcia-Garcia, H. M. , Francis, D. P. , Wong, P. , Di Mario, C. , Davies, J. E. , and Serruys, P. W. , 2014, “ Incomplete Stent Apposition Causes High Shear Flow Disturbances and Delay in Neointimal Coverage as a Function of Strut to Wall Detachment Distance Implications for the Management of Incomplete Stent Apposition,” Circ. Cardiovasc. Interv., 7(2), pp. 180–189. [CrossRef] [PubMed]
Chen, W. X. , Poon, E. K. W. , Hutchins, N. , Thondapu, V. , Barlis, P. , and Ooi, A. , 2017, “ Computational Fluid Dynamics Study of Common Stent Models Inside Idealised Curved Coronary Arteries,” Comput. Methods Biomech. Biomed. Eng., 20(6), pp. 671–681. [CrossRef]
Chen, W. X. , Poon, E. K. W. , Thondapu, V. , Hutchins, N. , Barlis, P. , and Ooi, A. , 2017, “ Haemodynamic Effects of Incomplete Stent Apposition in Curved Coronary Arteries,” J. Biomech., 63, pp. 164–173. [CrossRef] [PubMed]
Beier, S. , Ormiston, J. , Webster, M. , Cater, J. , Norris, S. , Medrano-Gracia, P. , Young, A. , and Cowan, B. , 2016, “ Hemodynamics in Idealized Stented Coronary Arteries: Important Stent Design Considerations,” Ann. Biomed. Eng., 44(2), pp. 315–329. [CrossRef] [PubMed]
Gundert, T. J. , Dholakia, R. J. , McMahon, D. , and LaDisa, J. F. , 2013, “ Computational Fluid Dynamics Evaluation of Equivalency in Hemodynamic Alterations Between Driver, Integrity, and Similar Stents Implanted Into an Idealized Coronary Artery,” ASME J. Med. Devices, 7(1), p. 011004. [CrossRef]
Morlacchi, S. , and Migliavacca, F. , 2013, “ Modeling Stented Coronary Arteries: Where We Are, Where to Go,” Ann. Biomed. Eng., 41(7), pp. 1428–1444. [CrossRef] [PubMed]
Chiastra, C. , Wu, W. , Dickerhoff, B. , Aleiou, A. , Dubini, G. , Otake, H. , Migliavacca, F. , and LaDisa, J. F. , 2016, “ Computational Replication of the Patient-Specific Stenting Procedure for Coronary Artery Bifurcations: From OCT and CT Imaging to Structural and Hemodynamics Analyses,” J. Biomech., 49(11), pp. 2102–2111. [CrossRef] [PubMed]
Chiastra, C. , Morlacchi, S. , Gallo, D. , Morbiducci, U. , Cárdenes, R. , Larrabide, I. , and Migliavacca, F. , 2013, “ Computational Fluid Dynamic Simulations of Image-Based Stented Coronary Bifurcation Models,” J. R. Soc. Interface, 10(84), p. 20130193. [CrossRef] [PubMed]
Gundert, T. J. , Marsden, A. L. , Yang, W. , and LaDisa, J. F. , 2012, “ Optimization of Cardiovascular Stent Design Using Computational Fluid Dynamics,” ASME J. Biomech. Eng., 134(1), p. 011002. [CrossRef]
Gundert, T. J. , Marsden, A. L. , Yang, W. , Marks, D. S. , and LaDisa, J. F. , 2012, “ Identification of Hemodynamically Optimal Coronary Stent Designs Based on Vessel Caliber,” IEEE Trans. Biomed. Eng., 59(7), pp. 1992–2002. [CrossRef] [PubMed]
Poon, E. K. W , Barlis, P. , Moore, S. , Pan, W.-H. , Liu, Y. , Ye, Y. , Xue, Y. , Zhu, S. J. , and Ooi, A. S. H. , 2014, “ Numerical Investigations of the Haemodynamic Changes Associated With Stent Malapposition in an Idealised Coronary Artery,” J. Biomech., 47(12), pp. 2843–2851. [CrossRef] [PubMed]
Nissen, S. E. , Gurley, J. C. , Grines, C. L. , Booth, D. C. , Mcclure, R. , Berk, M. , Fischer, C. , and Demaria, A. N. , 1991, “ Intravascular Ultrasound Assessment of Lumen Size and Wall Morphology in Normal Subjects and Patients With Coronary Artery Disease,” Circulation, 84(3), pp. 1087–1099. [CrossRef] [PubMed]
Kim, H. J. , Vignon-Clementel, I. E. , Coogan, J. S. , Figueroa, C. A. , Jansen, K. E. , and Taylor, C. A. , 2010, “ Patient-Specific Modeling of Blood Flow and Pressure in Human Coronary Arteries,” Ann. Biomed. Eng., 38(10), pp. 3195–3209. [CrossRef] [PubMed]
Weissler, A. M. , Peeler, R. G. , and Roehll, W. H. , 1961, “ Relationships Between Left Ventricular Ejection Time, Stroke Volume, and Heart Rate in Normal Individuals and Patients With Cardiovascular Disease,” Am. Heart J., 62(3), pp. 367–378. [CrossRef] [PubMed]
Gousios, A. , and Shearn, M. A. , 1959, “ Effect of Intravenous Heparin on Human Blood Viscosity,” Circulation, 20(6), pp. 1063–1066. [CrossRef] [PubMed]
Peric, M. , and Ferguson, S. , 2005, “ The Advantage of Polyhedral Meshes,” CD Adapco Group, Melville, NY, Report. https://pdfs.semanticscholar.org/51ae/90047ab44f53849196878bfec4232b291d1c.pdf
Tu, S. , Xu, L. , Ligthart, J. , Xu, B. , Witberg, K. , Sun, Z. , Koning, G. , Reiber, J. H. C. , and Regar, E. , 2012, “ In Vivo Comparison of Arterial Lumen Dimensions Assessed by Co-Registered Three-Dimensional (3D) Quantitative Coronary Angiography, Intravascular Ultrasound and Optical Coherence Tomography,” Int. J. Cardiovasc. Imaging, 28(6), pp. 1315–1327. [CrossRef] [PubMed]
Jiang, B. , Thondapu, V. , Barlis, P. , Poon, E. K. W. , and Ooi, A. S. H. , 2017, “ The Effects of the Pulsatile Period on the Size of Recirculation Bubble in the Vicinity of Stent Struts,” J. Phys. Conf. Ser., 822, p. 012068. [CrossRef]
Tenekecioglu, E. , Poon, E. K. W. , Collet, C. , Thondapu, V. , Torii, R. , Bourantas, C. V. , Zeng, Y. , Onuma, Y. , Ooi, A. S. H. , Serruys, P. W. , and Barlis, P. , 2016, “ The Nidus for Possible Thrombus Formation,” JACC Cardiovasc. Interv., 9(20), pp. 2167–2168. [CrossRef] [PubMed]
Poon, E. K. W. , Thondapu, V. , Hayat, U. , Barlis, P. , Yap, C. Y. , Kuo, P.-H. , Wang, Q. , Ma, J. , Zhu, S. J. , Moore, S. , and Ooi, A. S. H. , 2018, “ Elevated Blood Viscosity and Microrecirculation Resulting From Coronary Stent Malapposition,” ASME J. Biomech. Eng., 140(5), p. 051006. [CrossRef]
Gijsen, F. J. H. , Oortman, R. M. , Wentzel, J. J. , Schuurbiers, J. C. H. , Tanabe, K. , Degertekin, M. , Ligthart, J. M. , Thury, A. , De Feyter, P. J. , Serruys, P. W. , and Slager, C. J. , 2003, “ Usefulness of Shear Stress Pattern in Predicting Neointima Distribution in Sirolimus-Eluting Stents in Coronary Arteries,” Am. J. Cardiol., 92(11), pp. 1325–1328. [CrossRef] [PubMed]
Kloet, J. , and Giessen, W. J. V. D. , 2001, “ Relationship Between Neointimal Thickness and Shear Stress After Wallstent Implantation in Human Coronary Arteries,” Circulation, 103(13), pp. 1740–1745.
Chen, H. Y. , Sinha, A. K. , Choy, J. S. , Zheng, H. , Sturek, M. , Bigelow, B. , Bhatt, D. L. , and Kassab, G. S. , 2011, “ Mis-Sizing of Stent Promotes Intimal Hyperplasia: Impact of Endothelial Shear and Intramural Stress,” AJP Hear. Circ. Physiol., 301(6), pp. H2254–H2263. [CrossRef]
Byrne, R. A. , Joner, M. , and Kastrati, A. , 2015, “ Stent Thrombosis and Restenosis: What Have We Learned and Where Are We Going? The Andreas Grüntzig Lecture ESC 2014,” Eur. Heart J., 36(47), pp. 3320–3331. [CrossRef] [PubMed]
Reneman, R. S. , Arts, T. , and Hoeks, A. P. G. , 2006, “ Wall Shear Stress—An Important Determinant of Endothelial Cell Function and Structure—In the Arterial System In Vivo: Discrepancies With Theory,” J. Vasc. Res., 43(3), pp. 251–269. [CrossRef] [PubMed]
Garcìa-Garcìa, H. M. , Gogas, B. D. , Serruys, P. W. , and Bruining, N. , 2011, “ IVUS-Based Imaging Modalities for Tissue Characterization: Similarities and Differences,” Int. J. Cardiovasc. Imaging, 27(2), pp. 215–224. [CrossRef] [PubMed]
Holme, P. A. , Orvim, U. , Hamers, M. J. A. G. , Solum, N. O. , Brosstad, F. R. , Barstad, R. M. , and Sakariassen, K. S. , 1997, “ Shear-Induced Platelet Activation and Platelet Microparticle Formation at Blood Flow Conditions as in Arteries With a Severe Stenosis,” Arterioscler. Thromb. Vasc. Biol., 17(4), pp. 646–653. [CrossRef] [PubMed]
Caiazzo, G. , Longo, G. , Giavarini, A. , Kilic, I. D. , Fabris, E. , Serdoz, R. , Mattesini, A. , Foin, N. , Secco, G. G. , De Rosa, S. , Indolfi, C. , and Di Mario, C. , 2016, “ Optical Coherence Tomography Guidance for Percutaneous Coronary Intervention With Bioresorbable Scaffolds,” Int. J. Cardiol., 221, pp. 352–358. [CrossRef] [PubMed]
Chiastra, C. , Migliavacca, F. , Martínez, M. Á. , and Malvè, M. , 2014, “ On the Necessity of Modelling Fluid-Structure Interaction for Stented Coronary Arteries,” J. Mech. Behav. Biomed. Mater., 34, pp. 217–230. [CrossRef] [PubMed]
Attizzani, G. F. , Capodanno, D. , Ohno, Y. , and Tamburino, C. , 2014, “ Mechanisms, Pathophysiology, and Clinical Aspects of Incomplete Stent Apposition,” J. Am. Coll. Cardiol., 63(14), pp. 1355–1367. [CrossRef] [PubMed]
van Wyk, S. , Prahl Wittberg, L. , Bulusu, K. V. , Fuchs, L. , and Plesniak, M. W. , 2015, “ Non-Newtonian Perspectives on Pulsatile Blood-Analog Flows in a 180 °Curved Artery Model,” Phys. Fluids, 27(7), p. 071901. [CrossRef]
Taylor, C. A. , Fonte, T. A. , and Min, J. K. , 2013, “ Computational Fluid Dynamics Applied to Cardiac Computed Tomography for Noninvasive Quantification of Fractional Flow Reserve: Scientific Basis,” J. Am. Coll. Cardiol., 61(22), pp. 2233–2241. [CrossRef] [PubMed]


Grahic Jump Location
Fig. 1

(a) Side view and cross-sectional view of the model geometry and locations of ISA and (b) inlet pulsatile velocity waveform

Grahic Jump Location
Fig. 2

Instantaneous WSS distribution of the moderate ISA case

Grahic Jump Location
Fig. 3

Area percentage of lumen covered by low WSS (<0.5 Pa) at different time instants in a cardiac cycle

Grahic Jump Location
Fig. 4

Spatial TAWSS distribution and plots of data from extracted lines on each side. The upper and lower dashed lines depict the undisturbed, normal TAWSS along the minor and major axes, respectively.

Grahic Jump Location
Fig. 5

Mean velocity and shear rate magnitude distribution in cross-sectional planes at selected locations

Grahic Jump Location
Fig. 6

Instantaneous WSS distribution of the apposed case

Grahic Jump Location
Fig. 7

Instantaneous WSS distribution of the severe ISA case



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In