0
Technical Brief

Reduced Amount or Integrity of Arterial Elastic Fibers Alters Allometric Scaling Relationships for Aortic Diameter and Heart Weight, But Not Cardiac Function in Maturing Mice

[+] Author and Article Information
Jessica E. Wagenseil

Department of Mechanical Engineering
and Materials Science,
Washington University in St. Louis,
St. Louis, MO 63130
e-mail: jessica.wagenseil@wustl.edu

Manuscript received July 31, 2018; final manuscript received January 28, 2019; published online February 25, 2019. Assoc. Editor: Jonathan Vande Geest.

J Biomech Eng 141(4), 044504 (Feb 25, 2019) (4 pages) Paper No: BIO-18-1348; doi: 10.1115/1.4042766 History: Received July 31, 2018; Revised January 28, 2019

Allometric scaling laws relate physiologic parameters to body weight. Genetically modified mice allow investigation of allometric scaling laws when fundamental cardiovascular components are altered. Elastin haploinsufficient (Eln+/−) mice have reduced elastin amounts, and fibulin-5 knockout (Fbln5−/−) mice have compromised elastic fiber integrity in the large arteries which may alter cardiovascular scaling laws. Previously published echocardiography data used to investigate aortic and left ventricular function in Eln+/− and Fbln5−/− mice throughout postnatal development and early adulthood were reanalyzed to determine cardiovascular scaling laws. Aortic diameter, heart weight, stroke volume, and cardiac output have scaling exponents within 1–32% of the predicted theoretical range, indicating that the scaling laws apply to maturing mice. For aortic diameter, Eln+/− and Eln+/+ mice have similar scaling exponents, but different scaling constants, suggesting a shift in starting diameter, but no changes in aortic growth with body weight. In contrast, the scaling exponent for aortic diameter in Fbln5−/− mice is lower than Fbln5+/+ mice, but the scaling constant is similar, suggesting that aortic growth with body weight is compromised in Fbln5−/− mice. For both Eln+/− and Fbln5−/− groups, the scaling constant for heart weight is increased compared to the respective control group, suggesting an increase in starting heart weight, but no change in the increase with body weight during maturation. The scaling exponents and constants for stroke volume and cardiac output are not significantly affected by reduced elastin amounts or compromised elastic fiber integrity in the large arteries, highlighting a robust cardiac adaptation despite arterial defects.

FIGURES IN THIS ARTICLE
<>
Copyright © 2019 by ASME
Your Session has timed out. Please sign back in to continue.

References

West, G. B. , Brown, J. H. , and Enquist, B. J. , 1997, “ A General Model for the Origin of Allometric Scaling Laws in Biology,” Science, 276(5309), pp. 122–126. [CrossRef] [PubMed]
Lindstedt, S. L. , and Schaeffer, P. J. , 2002, “ Use of Allometry in Predicting Anatomical and Physiological Parameters of Mammals,” Lab. Animals., 36(1), pp. 1–19. [CrossRef]
Adolph, E. F. , 1949, “ Quantitative Relations in the Physiological Constitutions of Mammals,” Science, 109(2841), pp. 579–585. [CrossRef] [PubMed]
Holt, J. P. , Rhode, E. A. , and Kines, H. , 1968, “ Ventricular Volumes and Body Weight in Mammals,” Am. J. Physiol., 215(3), pp. 704–715. [CrossRef] [PubMed]
Holt, J. P. , Rhode, E. A. , Holt, W. W. , and Kines, H. , 1981, “ Geometric Similarity of Aorta, Venae Cavae, and Certain of Their Branches in Mammals,” Am. J. Physiol., 241(1), pp. R100–R104. [PubMed]
Stahl, W. R. , 1967, “ Scaling of Respiratory Variables in Mammals,” J. Appl. Physiol., 22(3), pp. 453–460. [CrossRef] [PubMed]
Murray, C. D. , 1926, “ The Physiological Principle of Minimum Work—I: The Vascular System and the Cost of Blood Volume,” Proc. Natl. Acad. Sci. U. S. A., 12(3), pp. 207–214. [CrossRef] [PubMed]
Sather, B. A. , Hageman, D. , and Wagenseil, J. E. , 2012, “ Murray's Law Holds True in Elastin Haploinsufficient (Eln+/-) and Wild-Type (WT) Mice,” ASME J. Biomech. Eng., 134(12), p. 124504.
Wagenseil, J. E. , and Mecham, R. P. , 2009, “ Vascular Extracellular Matrix and Arterial Mechanics,” Physiol. Rev., 89(3), pp. 957–989. [CrossRef] [PubMed]
Dinardo, C. L. , Venturini, G. , Zhou, E. H. , Watanabe, I. S. , Campos, L. C. , Dariolli, R. , da Motta-Leal-Filho, J. M. , Carvalho, V. M. , Cardozo, K. H. , Krieger, J. E. , Alencar, A. M. , and Pereira, A. C. , 2014, “ Variation of Mechanical Properties and Quantitative Proteomics of VSMC Along the Arterial Tree,” Am. J. Physiol. Heart Circ. Physiol., 306(4), pp. H505–H516. [CrossRef] [PubMed]
Wagenseil, J. E. , Nerurkar, N. L. , Knutsen, R. H. , Okamoto, R. J. , Li, D. Y. , and Mecham, R. P. , 2005, “ Effects of Elastin Haploinsufficiency on the Mechanical Behavior of Mouse Arteries,” Am. J. Physiol. Heart Circ. Physiol., 289(3), pp. H1209–H1217. [CrossRef] [PubMed]
Le, V. P. , Cheng, J. K. , Kim, J. , Staiculescu, M. C. , Ficker, S. W. , Sheth, S. C. , Bhayani, S. A. , Mecham, R. P. , Yanagisawa, H. , and Wagenseil, J. E. , 2015, “ Mechanical Factors Direct Mouse Aortic Remodelling During Early Maturation,” J. R. Soc. Interface., 12(104), p. 20141350. [CrossRef] [PubMed]
Li, D. Y. , Toland, A. E. , Boak, B. B. , Atkinson, D. L. , Ensing, G. J. , Morris, C. A. , and Keating, M. T. , 1997, “ Elastin Point Mutations Cause an Obstructive Vascular Disease, Supravalvular Aortic Stenosis,” Hum. Mol. Genet., 6(7), pp. 1021–1028. [CrossRef] [PubMed]
Loeys, B. , Van Maldergem, L. , Mortier, G. , Coucke, P. , Gerniers, S. , Naeyaert, J. M. , and De Paepe, A. , 2002, “ Homozygosity for a Missense Mutation in Fibulin-5 (FBLN5) Results in a Severe Form of Cutis Laxa,” Hum. Mol. Genet., 11(18), pp. 2113–2118. [CrossRef] [PubMed]
Le, V. P. , Knutsen, R. H. , Mecham, R. P. , and Wagenseil, J. E. , 2011, “ Decreased Aortic Diameter and Compliance Precedes Blood Pressure Increases in Postnatal Development of Elastin-Insufficient Mice,” Am. J. Physiol. Heart Circ. Physiol., 301(1), pp. H221–H229. [CrossRef] [PubMed]
Le, V. P. , Stoka, K. V. , Yanagisawa, H. , and Wagenseil, J. E. , 2014, “ Fibulin‐5 Null Mice With Decreased Arterial Compliance Maintain Normal Systolic Left Ventricular Function, But Not Diastolic Function During Maturation,” Physiol. Rep., 2(3), p. e00257.
Wan, W. , Yanagisawa, H. , and Gleason, R. L., Jr. , 2010, “ Biomechanical and Microstructural Properties of Common Carotid Arteries From Fibulin-5 Null Mice,” Ann. Biomed. Eng., 38(12), pp. 3605–3617. [CrossRef] [PubMed]
Kozel, B. A. , Danback, J. R. , Waxler, J. L. , Knutsen, R. H. , de Las Fuentes, L. , Reusz, G. S. , Kis, E. , Bhatt, A. B. , and Pober, B. R. , 2014, “ Williams Syndrome Predisposes to Vascular Stiffness Modified by Antihypertensive Use and Copy Number Changes in NCF1,” Hypertension, 63(1), pp. 74–79. [CrossRef] [PubMed]
Papke, C. L. , and Yanagisawa, H. , 2014, “ Fibulin-4 and Fibulin-5 in Elastogenesis and Beyond: Insights From Mouse and Human Studies,” Matrix Biol., 37, pp. 142–149. [CrossRef] [PubMed]
Mitchell, G. F. , Hwang, S. J. , Vasan, R. S. , Larson, M. G. , Pencina, M. J. , Hamburg, N. M. , Vita, J. A. , Levy, D. , and Benjamin, E. J. , 2010, “ Arterial Stiffness and Cardiovascular Events: The Framingham Heart Study,” Circulation, 121(4), pp. 505–511. [CrossRef] [PubMed]
Le, V. P. , and Wagenseil, J. E. , 2012, “ Echocardiographic Characterization of Postnatal Development in Mice With Reduced Arterial Elasticity,” Cardiovasc. Eng. Technol., 3(4), pp. 424–438. [CrossRef] [PubMed]
Li, D. Y. , Faury, G. , Taylor, D. G. , Davis, E. C. , Boyle, W. A. , Mecham, R. P. , Stenzel, P. , Boak, B. , and Keating, M. T. , 1998, “ Novel Arterial Pathology in Mice and Humans Hemizygous for Elastin,” J. Clin. Invest., 102(10), pp. 1783–1787. [CrossRef] [PubMed]
Yanagisawa, H. , Davis, E. C. , Starcher, B. C. , Ouchi, T. , Yanagisawa, M. , Richardson, J. A. , and Olson, E. N. , 2002, “ Fibulin-5 Is an Elastin-Binding Protein Essential for Elastic Fibre Development In Vivo,” Nature, 415(6868), pp. 168–171. [CrossRef] [PubMed]
Dawson, T. , 2014, “ Allometric Relations and Scaling Laws for the Cardiovascular System of Mammals,” System, 2(2), pp. 168–185. [CrossRef]
Feldman, H. A. , and McMahon, T. A. , 1983, “ The 3/4 Mass Exponent for Energy Metabolism Is Not a Statistical Artifact,” Respir. Physiol., 52(2), pp. 149–163. [CrossRef] [PubMed]
Faury, G. , Pezet, M. , Knutsen, R. H. , Boyle, W. A. , Heximer, S. P. , McLean, S. E. , Minkes, R. K. , Blumer, K. J. , Kovacs, A. , Kelly, D. P. , Li, D. Y. , Starcher, B. , and Mecham, R. P. , 2003, “ Developmental Adaptation of the Mouse Cardiovascular System to Elastin Haploinsufficiency,” J. Clin. Invest., 112(9), pp. 1419–1428. [CrossRef] [PubMed]
Wagenseil, J. E. , Ciliberto, C. H. , Knutsen, R. H. , Levy, M. A. , Kovacs, A. , and Mecham, R. P. , 2010, “ The Importance of Elastin to Aortic Development in Mice,” Am. J. Physiol. Heart Circ. Physiol., 299(2), pp. H257–H264. [CrossRef] [PubMed]
Bellini, C. , Bersi, M. R. , Caulk, A. W. , Ferruzzi, J. , Milewicz, D. M. , Ramirez, F. , Rifkin, D. B. , Tellides, G. , Yanagisawa, H. , and Humphrey, J. D. , 2017, “ Comparison of 10 Murine Models Reveals a Distinct Biomechanical Phenotype in Thoracic Aortic Aneurysms,” J. R. Soc. Interface, 14(130), p. 20161036.
O'Rourke, M. F. , Staessen, J. A. , Vlachopoulos, C. , Duprez, D. , and Plante, G. E. , 2002, “ Clinical Applications of Arterial Stiffness; Definitions and Reference Values,” Am. J. Hypertens., 15(5), pp. 426–444. [CrossRef] [PubMed]
Dewey, F. E. , Rosenthal, D. , Murphy , D. J., Jr. , Froelicher, V. F. , and Ashley, E. A. , 2008, “ Does Size Matter? Clinical Applications of Scaling Cardiac Size and Function for Body Size,” Circulation, 117(17), pp. 2279–2287. [CrossRef] [PubMed]

Figures

Grahic Jump Location
Fig. 1

Experimental scaling laws for cardiovascular parameters in maturing mice. Log-log plots and linear regression analyses of cardiovascular parameters versus BW for Eln+/− compared to Eln+/+ (left column) and Fbln5−/− compared to Fbln5+/+ (right column) mice aged 7, 21, and 60 days. ASID (a, b), HW (c, d), SV (e, f), and CO (g, h) are shown. Best fit linear regression equation and R2 are given for each group. * = P < 0.05 for Eln+/− or Fbln5−/− compared to their respective WT control for slope or intercept. Original data are from Le et al. [16,21].

Tables

Errata

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In