0
Research Papers

A Hybrid Experimental-Computational Modeling Framework for Cardiovascular Device Testing

[+] Author and Article Information
Ethan Kung

Department of Mechanical Engineering,
Clemson University,
Clemson, SC 29634;
Department of Bioengineering,
Clemson University,
Clemson, SC 29634
e-mail: ekung@clemson.edu

Masoud Farahmand

Department of Mechanical Engineering,
Clemson University,
Clemson, SC 29634
e-mail: mfarahm@g.clemson.edu

Akash Gupta

Department of Mechanical Engineering,
Clemson University,
Clemson, SC 29634
e-mail: akashg@g.clemson.edu

1Corresponding author.

Manuscript received October 12, 2018; final manuscript received January 24, 2019; published online March 27, 2019. Assoc. Editor: Keefe B. Manning.

J Biomech Eng 141(5), 051012 (Mar 27, 2019) (8 pages) Paper No: BIO-18-1448; doi: 10.1115/1.4042665 History: Received October 12, 2018; Revised January 24, 2019

Significant advances in biomedical science often leverage powerful computational and experimental modeling platforms. We present a framework named physiology simulation coupled experiment (“PSCOPE”) that can capitalize on the strengths of both types of platforms in a single hybrid model. PSCOPE uses an iterative method to couple an in vitro mock circuit to a lumped-parameter numerical simulation of physiology, obtaining closed-loop feedback between the two. We first compared the results of Fontan graft obstruction scenarios modeled using both PSCOPE and an established multiscale computational fluid dynamics method; the normalized root-mean-square error values of important physiologic parameters were between 0.1% and 2.1%, confirming the fidelity of the PSCOPE framework. Next, we demonstrate an example application of PSCOPE to model a scenario beyond the current capabilities of multiscale computational methods—the implantation of a Jarvik 2000 blood pump for cavopulmonary support in the single-ventricle circulation; we found that the commercial Jarvik 2000 controller can be modified to produce a suitable rotor speed for augmenting cardiac output by approximately 20% while maintaining blood pressures within safe ranges. The unified modeling framework enables a testing environment which simultaneously operates a medical device and performs computational simulations of the resulting physiology, providing a tool for physically testing medical devices with simulated physiologic feedback.

FIGURES IN THIS ARTICLE
<>
Copyright © 2019 by ASME
Your Session has timed out. Please sign back in to continue.

References

Westerhof, N. , Bosman, F. , De Vries, C. J. , and Noordergraaf, A. , 1969, “ Analog Studies of the Human Systemic Arterial Tree,” J. Biomech., 2(2), pp. 121–143. [CrossRef] [PubMed]
Kung, E. , Perry, J. C. , Davis, C. , Migliavacca, F. , Pennati, G. , Giardini, A. , Hsia, T. Y. , and Marsden, A. , 2015, “ Computational Modeling of Pathophysiologic Responses to Exercise in Fontan Patients,” Ann. Biomed. Eng., 43(6), pp. 1335–1347. [CrossRef] [PubMed]
Pekkan, K. , Frakes, D. , De Zelicourt, D. , Lucas, C. W. , Parks, W. J. , and Yoganathan, A. P. , 2005, “ Coupling Pediatric Ventricle Assist Devices to the Fontan Circulation: Simulations With a Lumped-Parameter Model,” ASAIO J., 51(5), pp. 618–628. [CrossRef] [PubMed]
Conover, T. , Hlavacek, A. M. , Migliavacca, F. , Kung, E. , Dorfman, A. , Figliola, R. S. , and Hsia, T. Y. , and Modeling of Congenital Hearts Alliance (MOCHA) Investigators, 2018, “ An Interactive Simulation Tool for Patient-Specific Clinical Decision Support in Single-Ventricle Physiology,” J. Thorac. Cardiovasc. Surg., 155(2), pp. 712–721. [CrossRef] [PubMed]
Wu, W. , Pott, D. , Mazza, B. , Sironi, T. , Dordoni, E. , Chiastra, C. , Petrini, L. , Pennati, G. , Dubini, G. , Steinseifer, U. , Sonntag, S. , Kuetting, M. , and Migliavacca, F. , 2016, “ Fluid-Structure Interaction Model of a Percutaneous Aortic Valve: Comparison With an In Vivo Test and Feasibility Study in a Patient-Specific Case,” Ann. Biomed. Eng., 44(2), pp. 590–603. [CrossRef] [PubMed]
Burgreen, G. W. , Antaki, J. F. , Wu, Z. J. , and Holmes, A. J. , 2001, “ Computational Fluid Dynamics as a Development Tool for Rotary Blood Pumps,” Artif. Organs, 25(5), pp. 336–340. [CrossRef] [PubMed]
Kung, E. , Baretta, A. , Baker, C. , Arbia, G. , Biglino, G. , Corsini, C. , Schievano, S. , Vignon-Clementel, I. E. , Dubini, G. , Pennati, G. , Taylor, A. , Dorfman, A. , Hlavacek, A. M. , Marsden, A. L. , Hsia, T.-Y. , and Migliavacca, F. , 2013, “ Predictive Modeling of the Virtual Hemi-Fontan Operation for Second Stage Single Ventricle Palliation: Two Patient-Specific Cases,” J. Mech., 46(2), pp. 423–429
Ceballos, A. , Argueta-Morales, I. R. , Divo, E. , Osorio, R. , Caldarone, C. A. , Kassab, A. J. , and Decampli, W. M. , 2012, “ Computational Analysis of Hybrid Norwood Circulation With Distal Aortic Arch Obstruction and Reverse Blalock-Taussig Shunt,” Ann. Thorac. Surg., 94(5), pp. 1540–1550. [CrossRef] [PubMed]
Baloa, L. A. , Boston, J. R. , and Antaki, J. F. , 2001, “ Elastance-Based Control of a Mock Circulatory System,” Ann. Biomed. Eng., 29(3), pp. 244–251. [CrossRef] [PubMed]
Gregory, S. D. , Stevens, M. , Timms, D. , and Pearcy, M. , 2011, “ Replication of the Frank-Starling Response in a Mock Circulation Loop,” International Conference of the IEEE Engineering in Medicine and Biology Society, Boston, MA, Aug. 30–Sept. 3, pp. 6825–6828.
Gwak, K.-W. , Noh, M. D. , Paden, B. E. , and Antaki, J. F. , 2005, “ Fluidic Operational Amplifier for Mock Circulatory Systems-Simulation and Experimental Results,” American Control Conference, Portland, OR, June 8–10, pp. 3817–3822.
Pantalos, G. M. , Koenig, S. C. , Gillars, K. J. , Giridharan, G. A. , and Ewert, D. L. , 2004, “ Characterization of an Adult Mock Circulation for Testing Cardiac Support Devices,” ASAIO J., 50(1), pp. 37–46. [CrossRef] [PubMed]
Ferrari, G. , De Lazzari, C. , Mimmo, R. , Tosti, G. , Ambrosi, D. , and Gorczynska, K. , 1998, “ A Computer Controlled Mock Circulatory System for Mono- and Biventricular Assist Device Testing,” Int. J. Artif. Organs, 21(1), pp. 26–36. https://www.ncbi.nlm.nih.gov/pubmed/9554823?dopt=Abstract [PubMed]
Pillon, M. , Duffour, H. , and Jufer, M. , 1992, “ In Vitro Experiments: Circulatory Assist Device Interaction With a Virtual Cardiovascular System,” 14th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Paris, France, Oct. 29–Nov. 1, pp. 740–741.
Hanson, B. M. , Levesley, M. C. , Watterson, K. , and Walker, P. G. , 2007, “ Hardware-in-the-Loop-Simulation of the Cardiovascular System, With Assist Device Testing Application,” Med. Eng. Phys., 29(3), pp. 367–374. [CrossRef] [PubMed]
Alazmani, A. , Keeling, D. G. , Walker, P. G. , Abbas, S. K. , Jaber, O. , Watterson, K. , and Levesley, M. C. , 2012, “ Introducing a Hardware-in-the-Loop Simulation of the Cardiovascular System,” Fourth IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob), Rome, Italy, June 24–27, pp. 153–158.
Nestler, F. , Bradley, A. P. , Wilson, S. J. , Timms, D. L. , Frazier, O. H. , and Cohn, W. E. , 2014, “ A Hybrid Mock Circulation Loop for a Total Artificial Heart,” Artif. Organs, 38(9), pp. 775–782. [CrossRef] [PubMed]
Darowski, M. , Kozarski, M. , Ferrari, G. , Zieliński, K. , Górczyńska, K. , Szczepanowski, A. , Pałko, K. , Fresiello, L. , and Molfetta, A. D. , 2013, “ A New Hybrid (Hydro-Numerical) Model of the Circulatory System,” Bull. Pol. Acad. Sci.: Tech. Sci., 61(4), pp. 993–1003. https://content.sciendo.com/view/journals/bpasts/61/4/article-p993.xml
Ferrari, G. , De Lazzari, C. , Kozarski, M. , Clemente, F. , Górczyńska, K. , Mimmo, R. , Monnanni, E. , Tosti, G. , and Guaragno, M. , 2002, “ A Hybrid Mock Circulatory System: Testing a Prototype Under Physiologic and Pathological Conditions,” ASAIO J., 48(5), pp. 487–494. [CrossRef] [PubMed]
Kozarski, M. , Ferrari, G. , Zieliński, K. , Górczyńska, K. , Pałko, K. J. , Tokarz, A. , and Darowski, M. , 2008, “ A New Hybrid Electro-Numerical Model of the Left Ventricle,” Comput. Biol. Med., 38(9), pp. 979–989. [CrossRef] [PubMed]
Kozarski, M. , Suwalski, P. , Zieliński, K. , Górczyńska, K. , Szafron, B. , Pałko, K. , Smoczyński, R. , and Darowski, M. , 2015, “ A Hybrid (Hydro-Numerical) Circulatory Model: Investigations of Mechanical Aortic Valves and a Numerical Valve Model,” Bull. Pol. Acad. Sci.: Tech. Sci., 63(3), pp. 605–612.
Ochsner, G. , Amacher, R. , Amstutz, A. , Plass, A. , Schmid Daners, M. , Tevaearai, H. , Vandenberghe, S. , Wilhelm, M. J. , and Guzzella, L. , 2013, “ A Novel Interface for Hybrid Mock Circulations to Evaluate Ventricular Assist Devices,” IEEE Trans. Biomed. Eng., 60(2), pp. 507–516. [CrossRef] [PubMed]
Kung, E. , Pennati, G. , Migliavacca, F. , Hsia, T.-Y. , Figliola, R. S. , Marsden, A. , and Giardini, A. , 2014, “ A Simulation Protocol for Exercise Physiology in Fontan Patients Using a Closed-Loop Lumped-Parameter Model,” ASME J. Biomech. Eng., 136(8), p. 081007.
Kung, E. , Les, A. , Figueroa, C. A. , Medina, F. , Arcaute, K. , Wicker, R. , McConnell, M. , and Taylor, C. , 2011, “ In Vitro Validation of Finite Element Analysis of Blood Flow in Deformable Models,” Ann. Biomed. Eng., 39(7), pp. 1947–1960. [CrossRef] [PubMed]
Kung, E. O. , Les, A. S. , Medina, F. , Wicker, R. B. , McConnell, M. V. , and Taylor, C. A. , 2011, “ In Vitro Validation of Finite-Element Model of AAA Hemodynamics Incorporating Realistic Outlet Boundary Conditions,” ASME J. Biomech. Eng., 133(4), p. 041003. [CrossRef]
Giannico, S. , Hammad, F. , Amodeo, A. , Michielon, G. , Drago, F. , Turchetta, A. , Di Donato, R. , and Sanders, S. P. , 2006, “ Clinical Outcome of 193 Extracardiac Fontan Patients: The First 15 Years,” J. Am. Coll. Cardiol., 47(10), pp. 2065–2073. [CrossRef] [PubMed]
Alexi-Meskishvili, V. , Ovroutski, S. , Ewert, P. , Dähnert, I. , Berger, F. , Lange, P. E. , and Hetzer, R. , 2000, “ Optimal Conduit Size for Extracardiac Fontan Operation,” Eur. J. Cardio-Thorac. Surg., 18(6), pp. 690–695. [CrossRef]
Updegrove, A. , Wilson, N. M. , Merkow, J. , Lan, H. , Marsden, A. L. , and Shadden, S. C. , 2017, “ SimVascular: An Open Source Pipeline for Cardiovascular Simulation,” Ann. Biomed. Eng., 45(3), pp. 525–541. [CrossRef] [PubMed]
Goubergrits, L. , Mevert, R. , Yevtushenko, P. , Schaller, J. , Kertzscher, U. , Meier, S. , Schubert, S. , Riesenkampff, E. , and Kuehne, T. , 2013, “ The Impact of MRI-Based Inflow for the Hemodynamic Evaluation of Aortic Coarctation,” Ann. Biomed. Eng., 41(12), pp. 2575–2587. [CrossRef] [PubMed]
Esmaily-Moghadam, M. , Bazilevs, Y. , and Marsden, A. L. , 2015, “ A Bi-Partitioned Iterative Algorithm for Solving Linear Systems Arising From Incompressible Flow Problems,” Comput. Methods Appl. Mech. Eng., 286, pp. 40–62. [CrossRef]
Steinman, D. A. , Hoi, Y. , Fahy, P. , Morris, L. , Walsh, M. T. , Aristokleous, N. , Anayiotos, A. S. , Papaharilaou, Y. , Arzani, A. , Shadden, S. C. , Berg, P. , Janiga, G. , Bols, J. , Segers, P. , Bressloff, N. W. , Cibis, M. , Gijsen, F. H. , Cito, S. , Pallarés, J. , Browne, L. D. , Costelloe, J. A. , Lynch, A. G. , Degroote, J. , Vierendeels, J. , Fu, W. , Qiao, A. , Hodis, S. , Kallmes, D. F. , Kalsi, H. , Long, Q. , Kheyfets, V. O. , Finol, E. A. , Kono, K. , Malek, A. M. , Lauric, A. , Menon, P. G. , Pekkan, K. , Esmaily Moghadam, M. , Marsden, A. L. , Oshima, M. , Katagiri, K. , Peiffer, V. , Mohamied, Y. , Sherwin, S. J. , Schaller, J. , Goubergrits, L. , Usera, G. , Mendina, M. , Valen-Sendstad, K. , Habets, D. F. , Xiang, J. , Meng, H. , Yu, Y. , Karniadakis, G. E. , Shaffer, N. , and Loth, F. , 2013, “ Variability of Computational Fluid Dynamics Solutions for Pressure and Flow in a Giant Aneurysm: The ASME 2012 Summer Bioengineering Conference CFD Challenge,” ASME J. Biomech. Eng., 135(2), p. 021016. [CrossRef]
Arbia, G. , Corsini, C. , Esmaily Moghadam, M. , Marsden, A. L. , Migliavacca, F. , Pennati, G. , Hsia, T. Y. , Vignon-Clementel, I. E. , and Investigators, M. O. C. H. A. M. , 2014, “ Numerical Blood Flow Simulation in Surgical Corrections: What Do we Need for an Accurate Analysis?,” J. Surg. Res., 186(1), pp. 44–55. [CrossRef] [PubMed]
Prêtre, R. , Häussler, A. , Bettex, D. , and Genoni, M. , 2008, “ Right-Sided Univentricular Cardiac Assistance in a Failing Fontan Circulation,” Ann. Thorac. Surg., 86(3), pp. 1018–1020. [CrossRef] [PubMed]
Riemer, R. K. , Amir, G. , Reichenbach, S. H. , and Reinhartz, O. , 2005, “ Mechanical Support of Total Cavopulmonary Connection With an Axial Flow Pump,” J. Thorac. Cardiovasc. Surg., 130(2), pp. 351–354. [CrossRef] [PubMed]
Liang, F. , and Liu, H. , 2006, “ Simulation of Hemodynamic Responses to the Valsalva Maneuver: An Integrative Computational Model of the Cardiovascular System and the Autonomic Nervous System,” J. Physiol. Sci., 56(1), pp. 45–65. [CrossRef] [PubMed]

Figures

Grahic Jump Location
Fig. 1

Overall structure of a (a) numerical multiscale simulation and (b) hardware-in-the-loop hybrid model. The PSCOPE framework is a high-fidelity implementation of the hardware-in-the-loop hybrid modeling approach.

Grahic Jump Location
Fig. 2

(a) Schematic of an example PSCOPE model. Rsubscript and Csubscript are resistance and capacitance values, respectively. Psubscript represent pressures at the corresponding locations and Q is the volumetric flow rate through the physical experiment. (b) Overall structure of the protocol for identifying the solution Q waveform coupling the experimental and numerical domains. ((c)–(e)) Convergence of the PSCOPE model solution in a scenario containing a realistic numerical physiology model and a physical Jarvik 2000 blood pump operating at 5000 rpm. (c) The Q waveform initial estimate is updated and improved across iterations. (d) The difference between the ΔPnum and ΔPexp waveforms decreases with iterations. (e) The decreasing residual errors between ΔPnum and ΔPexp show the convergence of the PSCOPE model over iterations.

Grahic Jump Location
Fig. 3

Physiology simulation coupled experiment verification and example application setup. Hour-glass symbol denotes the insertion location where either a physical experiment ((a) and (c)) or a CFD simulation (b) is coupled to the lumped-parameter circuit physiology model of the single-ventricle circulation. ((a) and (b)) Verification of the PSCOPE against multiscale CFD simulations. Flow through a stenosis geometry is replicated in a hydraulic experiment (a) and simulated by CFD (b), resulting in a PSCOPE model and a multiscale simulation, respectively. (c) An application of the PSCOPE modeling a scenario where a Jarvik 2000 blood pump device is implemented for cavopulmonary support.

Grahic Jump Location
Fig. 4

Vorticity results at the peak flow time point from multiscale CFD simulation modeling the 85% IVC stenosis at 5 MET physiology. The maximum normalized vorticity is the maximum vorticity at the slice location normalized to that at the inlet.

Grahic Jump Location
Fig. 5

(a) 60% stenosis cases and (b) 85% stenosis cases. Physiologies of 1 and 5 MET are distinguished by different colored lines. Solid and dashed lines represent PSCOPE and multiscale simulation results. Qivc, Ppul, and ΔP represent the IVC flow, pulmonary artery pressure, and pressure drop across the stenotic 3D geometry, respectively. The NRMSE of important parameters demonstrates the accuracy of the PSCOPE. Data from one respiratory cycle (four cardiac cycles) are shown.

Grahic Jump Location
Fig. 6

An example application of the PSCOPE for modeling a scenario beyond the current capabilities of numerical simulations; the PSCOPE captures the closed-loop interactions between the physical experiment involving the Jarvik 2000 and the simulated physiology. (a) Mean values of important physiologic parameters corresponding to different pump rotor speed settings show favorable physiology at approximately 5000 rpm, below the normal operating range of the commercial device. ((b) and (c)) Detailed results at pump speed setting of 5000 rpm; data from one respiratory cycle (four cardiac cycles) are shown. (b) Ventricular pressure–volume loops show increased preload, stroke volume, and aortic pressure with cavopulmonary support compared to the reference case without pump support. (c) The physical operation of the Jarvik 2000 is impacted by physiologic rhythms as the device power consumption fluctuates with the changing IVC flow throughout the cardiac and respiratory cycles.

Tables

Errata

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In