Research Papers

Monte Carlo Type Simulations of Mineralized Collagen Fibril Based on Two Scale Asymptotic Homogenization

[+] Author and Article Information
Abhilash Awasthi

School of Engineering,
Indian Institute of Technology Mandi,
Mandi, Himachal Pradesh 175005, India
e-mail: abhiawasthi1993@gmail.com

Rajneesh Sharma

School of Engineering,
Indian Institute of Technology Mandi,
Mandi, Himachal Pradesh 175005, India
e-mail: rajnish.iitmandi@gmail.com

Rajesh Ghosh

School of Engineering,
Indian Institute of Technology Mandi,
Mandi, Himachal Pradesh 175005, India
e-mail: rajesh@iitmandi.ac.in

1Corresponding author.

Manuscript received June 4, 2018; final manuscript received December 30, 2018; published online February 13, 2019. Assoc. Editor: Jeffrey Ruberti.

J Biomech Eng 141(4), 041002 (Feb 13, 2019) (11 pages) Paper No: BIO-18-1259; doi: 10.1115/1.4042439 History: Received June 04, 2018; Revised December 30, 2018

A multiscale model for mineralized collagen fibril (MCF) is proposed by taking into account the uncertainties associated with the geometrical properties of the mineral phase and its distribution in the organic matrix. The asymptotic homogenization approach along with periodic boundary conditions has been used to derive the effective elastic moduli of bone's nanostructure at two hierarchical length scales, namely: microfibril (MF) and MCF. The uncertainties associated with the mineral plates have been directly included in the finite element mesh by randomly varying their sizes and structural arrangements. A total of 100 realizations for the MCF model with random distribution have been generated using an in-house MATLAB code, and Monte Carlo type of simulations have been performed under tension load to obtain the statistical equivalent modulus. The deformation response has been studied in both small (10%) and large (10%) strain regimes. The stress transformation mechanism has also been explored in MF which showed stress relaxation in the organic phase upon different stages of mineralization. The elastic moduli for MF under small and large strains have been obtained as 1.88 and 6.102 GPa, respectively, and have been used as an input for the upper scale homogenization procedure. Finally, the characteristic longitudinal moduli of the MCF in the small and large strain regimes are obtained as 4.08 ± 0.062 and 12.93 ± 0.148 GPa, respectively. All the results are in good agreement to those obtained from previous experiments and molecular dynamics (MD) simulations in the literature with a significant reduction in the computational cost.

Copyright © 2019 by ASME
Your Session has timed out. Please sign back in to continue.


Fratzl, P. , and Weinkamer, R. , 2007, “Nature's Hierarchical Materials,” Prog. Mater. Sci., 52(8), pp. 1263–1334. [CrossRef]
Oyen, M. L. , 2008, “The Materials Science of Bone: Lessons From Nature for Biomimetic Materials Synthesis,” MRS Bull., 33(1), pp. 49–55. [CrossRef]
Stephen, W. , and Wolfie, T. , 1992, “Bone Structure: From Angstroms to Microns,” FASEB J., 6(3), pp. 879–885. [CrossRef] [PubMed]
Landis, W. J. , 1995, “The Strength of a Calcified Tissue Depends in Part on the Molecular Structure and Organization of Its Constituent Mineral Crystals in Their Organic Matrix,” Bone, 16(5), pp. 533–544. [CrossRef] [PubMed]
Rho, J. Y. , Kuhn-Spearing, L. , and Zioupos, P. , 1998, “Mechanical Properties and the Hierarchical Structure of Bone,” Med. Eng. Phys., 20(2), pp. 92–102. [CrossRef] [PubMed]
Weiner, S. , and Wagner, H. D. , 1998, “The Material Bone: Structure-Mechanical Function Relations,” Annu. Rev. Mater. Sci., 28(1), pp. 271–298. [CrossRef]
Raspanti, M. , Congiu, T. , and Guizzardi, S. , 2001, “Tapping-Mode Atomic Force Microscopy in Fluid of Hydrated Extracellular Matrix,” Matrix Biol., 20(8), pp. 601–604. [CrossRef] [PubMed]
Barkaoui, A. , Chamekh, A. , Merzouki, T. , Hambli, R. , and Mkaddem, A. , 2014, “Multiscale Approach Including Microfibril Scale to Assess Elastic Constants of Cortical Bone Based on Neural Network Computation and Homogenization Method,” Int. J. Numer. Methods Biomed. Eng., 30(3), pp. 318–338. [CrossRef]
Olszta, M. J. , Cheng, X. , Jee, S. S. , Kumar, R. , Kim, Y. Y. , Kaufman, M. J. , Douglas, E. P. , and Gower, L. B. , 2007, “Bone Structure and Formation: A New Perspective,” Mater. Sci. Eng. R Rep., 58(3–5), pp. 77–116. [CrossRef]
Currey, J. D. , 2003, “Role of Collagen and Other Organics in the Mechanical Properties of Bone,” Osteoporosis Int., 14(Suppl. 5), pp. 29–36. [CrossRef]
Boskey, A. L. , 2013, “Bone Composition: Relationship to Bone Fragility and Antiosteoporotic Drug Effects,” Bonekey Rep., 2, pp. 1–11. [CrossRef]
Buehler, M. J. , 2008, “Nanomechanics of Collagen Fibrils Under Varying Cross-Link Densities: Atomistic and Continuum Studies,” J. Mech. Behav. Biomed. Mater., 1(1), pp. 59–67. [CrossRef] [PubMed]
Currey, J. D. , 1984, “Effects of Differences in Mineralization on the Mechanical Properties of Bone,” Philos. Trans. R. Soc. London B, 304(1121), pp. 509–518. [CrossRef]
Bembey, K. A. , Koonjul, V. , Bushby, J. A. , Ferguson, L. V. , and Boyde, A. , 2005, “Contribution of Collagen, Mineral and Water Phases to the Nanomechanical Properties of Bone,” MRS Proc., 844, pp. 1–6.
Samuel, J. , Park, J. S. , Almer, J. , and Wang, X. , 2016, “Effect of Water on Nanomechanics of Bone is Different Between Tension and Compression,” J. Mech. Behav. Biomed. Mater., 57, pp. 128–138. [CrossRef] [PubMed]
Pradhan, S. M. , Katti, K. S. , and Katti, D. R. , 2014, “Multiscale Model of Collagen Fibril in Bone: Elastic Response,” J. Eng. Mech., 140(3), pp. 454–461. [CrossRef]
Depalle, B. , Qin, Z. , Shefelbine, S. J. , and Buehler, M. J. , 2015, “Influence of Cross-Link Structure, Density and Mechanical Properties in the Mesoscale Deformation Mechanisms of Collagen Fibrils,” J. Mech. Behav. Biomed. Mater., 52, pp. 1–13. [CrossRef] [PubMed]
Oftadeh, R. , Entezari, V. , Sporri, G. , Villa-Camacho, J. C. , Krigbaum, H. , Strawich, E. , Graham, L. , Rey, C. , Chiu, H. , Muller, R. , Hashemi, H. N. , Vaziri, A. , and Nazarian, A. , 2015, “Hierarchical Analysis and Multi-Scale Modelling of Rat Cortical and Trabecular Bone,” J. R. Soc. Interface, 12(106), p. 20150070. [CrossRef] [PubMed]
Yoon, Y. J. , and Cowin, S. C. , 2008, “The Estimated Elastic Constants for a Single Bone Osteonal Lamella,” Biomech. Model. Mechanobiol., 7(1), pp. 1–11. [CrossRef] [PubMed]
Fritsch, A. , and Hellmich, C. , 2007, “Universal' Microstructural Patterns in Cortical and Trabecular, Extracellular and Extravascular Bone Materials: Micromechanics-Based Prediction of Anisotropic Elasticity,” J. Theor. Biol., 244(4), pp. 597–620. [CrossRef] [PubMed]
Gautieri, A. , Vesentini, S. , Redaelli, A. , and Ballarini, R. , 2013, “Modeling and Measuring Visco-Elastic Properties: From Collagen Molecules to Collagen Fibrils,” Int. J. Non Linear Mech., 56, pp. 25–33. [CrossRef]
Wallace, R. J. , Pankaj, P. , and Simpson, A. H. R. W. , 2013, “The Effect of Strain Rate on the Failure Stress and Toughness of Bone of Different Mineral Densities,” J. Biomech., 46(13), pp. 2283–2287. [CrossRef] [PubMed]
Vercher, A. , Giner, E. , Arango, C. , Tarancón, J. E. , and Fuenmayor, F. J. , 2014, “Homogenized Stiffness Matrices for Mineralized Collagen Fibrils and Lamellar Bone Using Unit Cell Finite Element Models,” Biomech. Model. Mechanobiol., 13(2), pp. 437–449. [CrossRef] [PubMed]
Akkus, O. , 2005, “Elastic Deformation of Mineralized Collagen Fibrils: An Equivalent Inclusion Based Composite Model,” ASME J. Biomech. Eng., 127(3), p. 383. [CrossRef]
Nair, A. K. , Gautieri, A. , Chang, S.-W. , and Buehler, M. J. , 2013, “Molecular Mechanics of Mineralized Collagen Fibrils in Bone,” Nat. Commun., 4, pp. 1724–1729. [CrossRef] [PubMed]
Van Der Rijt, J. A. J. , Van Der Werf, K. O. , Bennink, M. L. , Dijkstra, P. J. , and Feijen, J. , 2006, “Micromechanical Testing of Individual Collagen Fibrils,” Macromol. Biosci., 6(9), pp. 699–702. [CrossRef]
Yang, L. , van der Werf, K. O. , Dijkstra, P. J. , Feijen, J. , and Bennink, M. L. , 2012, “Micromechanical Analysis of Native and Cross-Linked Collagen Type I Fibrils Supports the Existence of Microfibrils,” J. Mech. Behav. Biomed. Mater., 6, pp. 148–158. [CrossRef] [PubMed]
Fratzl, P. , Fratzl-Zelman, N. , and Klaushofer, K. , 1993, “Collagen Packing and Mineralization. An X-Ray Scattering Investigation of Turkey Leg Tendon,” Biophys. J., 64(1), pp. 260–266. [CrossRef] [PubMed]
Fratzl, P. , Misof, K. , Zizak, I. , Rapp, G. , Amenitsch, H. , and Bernstorff, S. , 1998, “Fibrillar Structure and Mechanical Properties of Collagen,” J. Struct. Biol., 122(1–2), pp. 119–122. [CrossRef] [PubMed]
Shen, Z. L. , Dodge, M. R. , Kahn, H. , Ballarini, R. , and Eppell, S. J. , 2008, “Stress-Strain Experiments on Individual Collagen Fibrils,” Biophys. J., 95(8), pp. 3956–3963. [CrossRef] [PubMed]
Hang, F. , and Barber, A. H. , 2011, “Nano-Mechanical Properties of Individual Mineralized Collagen Fibrils From Bone Tissue,” J. R. Soc. Interface, 8(57), pp. 500–505. [CrossRef] [PubMed]
Gautieri, A. , Vesentini, S. , Redaelli, A. , and Buehler, M. J. , 2011, “Hierarchical Structure and Nanomechanics of Collagen Microfibrils From the Atomistic Scale Up,” Nano Lett., 11(2), pp. 757–766. [CrossRef] [PubMed]
Tang, Y. , Ballarini, R. , Buehler, M. J. , and Eppell, S. J. , 2010, “Deformation Micromechanisms of Collagen Fibrils Under Uniaxial Tension,” J. R. Soc. Interface, 7(46), pp. 839–850. [CrossRef] [PubMed]
Zhou, Z. , Qian, D. , and Minary-Jolandan, M. , 2017, “Clustering of Hydroxyapatite on a Super-Twisted Collagen Microfibril Under Mechanical Tension,” J. Mater. Chem. B, 5(12), pp. 2235–2244. [CrossRef]
Parnell, W. J. , Vu, M. B. , Grimal, Q. , and Naili, S. , 2012, “Analytical Methods to Determine the Effective Mesoscopic and Macroscopic Elastic Properties of Cortical Bone,” Biomech. Model. Mechanobiol., 11(6), pp. 883–901. [CrossRef] [PubMed]
Nikolov, S. , and Raabe, D. , 2008, “Hierarchical Modeling of the Elastic Properties of Bone at Submicron Scales: The Role of Extrafibrillar Mineralization,” Biophys. J., 94(11), pp. 4220–4232. [CrossRef] [PubMed]
Qwamizadeh, M. , Zhang, Z. , Zhou, K. , and Zhang, Y. W. , 2016, “Protein Viscosity, Mineral Fraction and Staggered Architecture Cooperatively Enable the Fastest Stress Wave Decay in Load-Bearing Biological Materials,” J. Mech. Behav. Biomed. Mater., 60, pp. 339–355. [CrossRef] [PubMed]
Parnell, W. J. , and Grimal, Q. , 2009, “The Influence of Mesoscale Porosity on Cortical Bone Anisotropy. Investigations Via Asymptotic Homogenization,” J. R. Soc. Interface, 6(30), pp. 97–109. [CrossRef] [PubMed]
Jäger, I. , and Fratzl, P. , 2000, “Mineralized Collagen Fibrils: A Mechanical Model With a Staggered Arrangement of Mineral Particles,” Biophys. J., 79(4), pp. 1737–1746. [CrossRef] [PubMed]
Yuan, F. , Stock, S. R. , Haeffner, D. R. , Almer, J. D. , Dunand, D. C. , and Brinson, L. C. , 2011, “A New Model to Simulate the Elastic Properties of Mineralized Collagen Fibril,” Biomech. Model. Mechanobiol., 10(2), pp. 147–160. [CrossRef] [PubMed]
Abueidda, D. W. , Sabet, F. A. , and Jasiuk, I. M. , 2017, “Modeling of Stiffness and Strength of Bone at Nanoscale,” ASME J. Biomech. Eng., 139(5), p. 051006. [CrossRef]
Barkaoui, A. , Tlili, B. , Vercher-Martínez, A. , and Hambli, R. , 2016, “A Multiscale Modelling of Bone Ultrastructure Elastic Proprieties Using Finite Elements Simulation and Neural Network Method,” Comput. Methods Programs Biomed., 134, pp. 69–78. [CrossRef] [PubMed]
Vercher-Martínez, A. , Giner, E. , Arango, C. , and Javier Fuenmayor, F. , 2015, “Influence of the Mineral Staggering on the Elastic Properties of the Mineralized Collagen Fibril in Lamellar Bone,” J. Mech. Behav. Biomed. Mater., 42, pp. 243–256. [CrossRef] [PubMed]
Lai, Z. B. , and Yan, C. , 2017, “Mechanical Behaviour of Staggered Array of Mineralised Collagen Fibrils in Protein Matrix: Effects of Fibril Dimensions and Failure Energy in Protein Matrix,” J. Mech. Behav. Biomed. Mater., 65, pp. 236–247. [CrossRef] [PubMed]
Lai, Z. B. , Bai, R. , and Yan, C. , 2017, “Effect of Nano-Scale Constraint on the Mechanical Behaviour of Osteopontin–Hydroxyapatite Interfaces,” Comput. Mater. Sci., 126, pp. 59–65. [CrossRef]
Hambli, R. , and Barkaoui, A. , 2012, “Physically Based 3D Finite Element Model of a Single Mineralized Collagen Microfibril,” J. Theor. Biol., 301, pp. 28–41. [CrossRef] [PubMed]
Barkaoui, A. , and Hambli, R. , 2014, “Nanomechanical Properties of Mineralised Collagen Microfibrils Based on Finite Elements Method: Biomechanical Role of Cross-Links,” Comput. Methods Biomech. Biomed. Engin., 17(14), pp. 1590–1601. [CrossRef] [PubMed]
Barkaoui, A. , Hambli, R. , and Tavares, J. M. R. S. , 2015, “Effect of Material and Structural Factors on Fracture Behaviour of Mineralised Collagen Microfibril Using Finite Element Simulation,” Comput. Methods Biomech. Biomed. Eng., 18(11), pp. 1181–1190. [CrossRef]
Awasthi, A. , Sharma, R. , and Ghosh, R. , 2018, “Application of Embedded Element Approach to Nanostructure of Bone,” Symposium and Workshop for Analytical Youth in Applied Mechanics (SWAYAM), Pilani, Rajasthan, July 4–6, pp. 4–8. https://www.researchgate.net/publication/326292232_Application_of_Embedded_Element_Approach_to_Nanostructure_of_Bone
Tong, W. , Glimcher, M. J. , Katz, J. L. , Kuhn, L. , and Eppell, S. J. , 2003, “Size and Shape of Mineralites in Young Bovine Bone Measured by Atomic Force Microscopy,” Calcif. Tissue Int., 72(5), pp. 592–598. [CrossRef] [PubMed]
Eppell, S. J. , Tong, W. , Lawrence Katz, J. , Kuhn, L. , and Glimcher, M. J. , 2001, “Shape and Size of Isolated Bone Mineralites Measured Using Atomic Force Microscopy,” J. Orthop. Res., 19(6), pp. 1027–1034. [CrossRef] [PubMed]
Vater, C. A. , Harris, E. D. , and Siegel, R. C. , 1979, “Native Cross-Links in Collagen Fibrils Induce Resistance to Human Synovial Collagenase,” Biochem. J., 181(3), pp. 639–645. [CrossRef] [PubMed]
Brodsky, B. , and Eikenberry, E. F. , 1982, “[5] Characterization of Fibrous Forms of Collagen,” Methods Enzymol., 82, pp. 127–174.
Tzaphlidou, M. , 2001, “Measurement of the Axial Periodicity of Collagen Fibrils Using an Image Processing Method,” Micron, 32(3), pp. 337–339. [CrossRef] [PubMed]
Hulmes, D. J. , Wess, T. J. , Prockop, D. J. , and Fratzl, P. , 1995, “Radial Packing, Order, and Disorder in Collagen Fibrils,” Biophys. J., 68(5), pp. 1661–1670. [CrossRef] [PubMed]
Smith, J. W. , 1968, “Molecular Pattern in Native Collagen,” Nature, 219(5150), pp. 157–158. [CrossRef] [PubMed]
Orgel, J. P. R. O. , Miller, A. , Irving, T. C. , Fischetti, R. F. , Hammersley, A. P. , and Wess, T. J. , 2001, “The In Situ Supermolecular Structure of Type I Collagen,” Structure, 9(11), pp. 1061–1069. [CrossRef] [PubMed]
Uzel, S. G. M. , and Buehler, M. J. , 2009, “Nanomechanical Sequencing of Collagen: Tropocollagen Features Heterogeneous Elastic Properties at the Nanoscale,” Integr. Biol., 1(7), p. 452. [CrossRef]
Lees, S. , 1981, “A Mixed Packing Model for Bone Collagen,” Calcif. Tissue Int., 33(6), pp. 591–602. [CrossRef] [PubMed]
Minary-Jolandan, M. , and Yu, M.-F. , 2009, “Nanomechanical Heterogeneity in the Gap and Overlap Regions of Type I Collagen Fibrils With Implications for Bone Heterogeneity,” Biomacromolecules, 10(9), pp. 2565–2570. [CrossRef] [PubMed]
Eppell, S. , Smith, B. , Kahn, H. , and Ballarini, R. , 2006, “Nano Measurements With Micro-Devices: Mechanical Properties of Hydrated Collagen Fibrils,” J. R. Soc. Interface, 3(6), pp. 117–121. [CrossRef] [PubMed]
Shen, Z. L. , Kahn, H. , Ballarini, R. , and Eppell, S. J. , 2011, “Viscoelastic Properties of Isolated Collagen Fibrils,” Biophys. J., 100(12), pp. 3008–3015. [CrossRef] [PubMed]
Rubin, M. A. , Jasiuk, I. , Taylor, J. , Rubin, J. , Ganey, T. , and Apkarian, R. P. , 2003, “TEM Analysis of the Nanostructure of Normal and Osteoporotic Human Trabecular Bone,” Bone, 33(3), pp. 270–282. [CrossRef] [PubMed]
Currey, J. D. , 1969, “The Relationship Between the Stiffness and the Mineral Content of Bone,” J. Biomech., 2(4), pp. 477–480. [CrossRef] [PubMed]
Sasaki, N. , Ikawa, T. , and Fukuda, A. , 1991, “Orientation of Mineral in Bovine Bone and the Anisotropic Mechanical Properties of Plexiform Bone,” J. Biomech., 24(1), pp. 57–61. [CrossRef] [PubMed]
Jansson, S. , 1992, “Homogenized Nonlinear Constitutive Properties and Local Stress Concentrations for Composites With Periodic Internal Structure,” Int. J. Solids Struct., 29(17), pp. 2181–2200. [CrossRef]
Rao, M. V. , Mahajan, P. , and Mittal, R. K. , 2008, “Effect of Architecture on Mechanical Properties of Carbon/Carbon Composites,” Compos. Struct., 83(2), pp. 131–142. [CrossRef]
Sharma, R. , Bhagat, A. R. , and Mahajan, P. , 2014, “Finite Element Analysis for Mechanical Characterization of 4D Inplane Carbon/Carbon Composite With Imperfect Microstructure,” Lat. J. Solids Struct., 11(2), pp. 170–184. [CrossRef]
Qsymah, A. , Sharma, R. , Yang, Z. , Margetts, L. , and Mummery, P. , 2017, “Micro X-Ray Computed Tomography Image-Based Two-Scale Homogenisation of Ultra High Performance Fibre Reinforced Concrete,” Constr. Build. Mater., 130, pp. 230–240. [CrossRef]
Tabatabaei, S. A. , Lomov, S. V. , and Verpoest, I. , 2014, “Assessment of Embedded Element Technique in Meso-FE Modelling of Fibre Reinforced Composites,” Compos. Struct., 107, pp. 436–446. [CrossRef]
Dassault Systèmes, 2016, “ABAQUS 2017 Documentation,” Dassault Systèmes, Providence, RI.
Turunen, M. J. , Kaspersen, J. D. , Olsson, U. , Guizar-Sicairos, M. , Bech, M. , Schaff, F. , Tägil, M. , Jurvelin, J. S. , and Isaksson, H. , 2016, “Bone Mineral Crystal Size and Organization Vary Across Mature Rat Bone Cortex,” J. Struct. Biol., 195(3), pp. 337–344. [CrossRef] [PubMed]
Danielsen, C. C. , Mosekilde, L. , and Svenstrup, B. , 1993, “Cortical Bone Mass, Composition, and Mechanical Properties in Female Rats in Relation to Age, Long-Term Ovariectomy, and Estrogen Substitution,” Calcif. Tissue Int., 52(1), pp. 26–33. [CrossRef] [PubMed]
Fratzl, P. , Fratzl-Zelman, N. , Klaushofer, K. , Vogl, G. , and Koller, K. , 1991, “Nucleation and Growth of Mineral Crystals in Bone Studied by Small-Angle X-Ray Scattering,” Calcif. Tissue Int., 48(6), pp. 407–413. [CrossRef] [PubMed]
Fratzl, P. , Groschner, M. , Vogl, G. , Plenk, H. , Eschberger, J. , Fratzl‐Zelman, N. , Koller, K. , and Klaushofer, K. , 1992, “Mineral Crystals in Calcified Tissues: A Comparative Study by SAXS,” J. Bone Miner. Res., 7(3), pp. 329–334. [CrossRef] [PubMed]
Bonar, L. C. , Lees, S. , and Mook, H. A. , 1985, “Neutron Diffraction Studies of Collagen in Fully Mineralized Bone,” J. Mol. Biol., 181(2), pp. 265–270. [CrossRef] [PubMed]
Vesentini, S. , Redaelli, A. , and Gautieri, A. , 2013, “Nanomechanics of Collagen Microfibrils,” Muscles Ligaments Tendons J., 3(1), p. 23. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3676161/ [PubMed]
Lorenzo, A. C. , and Caffarena, E. R. , 2005, “Elastic Properties, Young's Modulus Determination and Structural Stability of the Tropocollagen Molecule: A Computational Study by Steered Molecular Dynamics,” J. Biomech., 38(7), pp. 1527–1533. [CrossRef] [PubMed]
Sasaki, N. , and Odajima, S. , 1996, “Stress-Strain Curve and Young's Modulus of a Collagen Molecule as Determined by the X-Ray Diffraction Technique,” J. Biomech., 29(5), pp. 655–658. [CrossRef] [PubMed]
Nair, A. K. , Gautieri, A. , and Buehler, M. J. , 2014, “Role of Intra Fibrillar Collagen Mineralization in Defining the Compressive Properties of Nascent Bone,” Biomacromolecules, 15(7), pp. 2494–2500. [CrossRef] [PubMed]
Buehler, M. J. , 2007, “Molecular Nanomechanics of Nascent Bone: Fibrillar Toughening by Mineralization,” Nanotechnology, 18(29), p. 295102. [CrossRef]
Sansalone, V. , Lemaire, T. , and Naili, S. , 2009, “Variational Homogenization for Modeling Fibrillar Structures in Bone,” Mech. Res. Commun., 36(2), pp. 265–273. [CrossRef]
Wenger, M. P. E. , Bozec, L. , Horton, M. A. , and Mesquida, P. , 2007, “Mechanical Properties of Collagen Fibrils,” Biophys. J., 93(4), pp. 1255–1263. [CrossRef] [PubMed]
Cusack, S. , and Miller, A. , 1979, “Determination of the Elastic Constants of Collagen by Brillouin Light Scattering,” J. Mol. Biol., 135(1), pp. 39–51. [CrossRef] [PubMed]
Weibull, W. , 1951, “A Statistical Distribution Function of Wide Applicability,” J. Appl. Mech., 18(3), pp. 293–297. https://pdfs.semanticscholar.org/88c3/7770028e7ed61180a34d6a837a9a4db3b264.pdf
Yang, Z. J. , Su, X. T. , Chen, J. F. , and Liu, G. H. , 2009, “Monte Carlo Simulation of Complex Cohesive Fracture in Random Heterogeneous Quasi-Brittle Materials,” Int. J. Solids Struct., 46(17), pp. 3222–3234. [CrossRef]
Wang, X. F. , Yang, Z. J. , Yates, J. R. , Jivkov, A. P. , and Zhang, C. , 2015, “Monte Carlo Simulations of Mesoscale Fracture Modelling of Concrete With Random Aggregates and Pores,” Constr. Build. Mater., 75, pp. 35–45. [CrossRef]
Kotz, S. , and Nadarajah, S. , 2000, Extreme Value Distributions: Theory and Applications, World Scientific, Covent Garden, London.


Grahic Jump Location
Fig. 1

Two scales hierarchical structure of the MCF: (a) MCF scale with mineral plates embedded in the MF matrix and (b) MF scale as TC molecules embedded in a matrix of NCPs and water

Grahic Jump Location
Fig. 2

General FE model with periodic boundary conditions

Grahic Jump Location
Fig. 3

Two-dimensional MF models: (a) shows the unmineralized MF model (MF1), (b) shows the MF model with mineral plates in the axial gap between two TC molecules (MF2), and (c) shows the mineral plates being deposited in the gap and extra collagenous space (MF3)

Grahic Jump Location
Fig. 4

Different 2D MCF models. The figure shows models with (a) regular distribution (F1), (b) staggered distribution (F2), and (c) random distribution (F3) of mineral plates within the MF matrix.

Grahic Jump Location
Fig. 5

Two-dimensional MF models with their respective longitudinal stress S11 (MPa) contour plots in the small strain regime. (a) shows the unmineralized MF model (MF1), (b) shows the MF model with mineral plates in the axial gap between two TC molecules (MF2), and (c) shows the mineral plates being deposited in the gap and extra collagenous space (MF3).

Grahic Jump Location
Fig. 6

Young's modulus at SS and LS for different MF models from the present study and their comparison with the values from the literature. (a) shows the small and large strain moduli for different MF models and (b) compares the elastic modulus from the present study with the values from the literature.

Grahic Jump Location
Fig. 7

Different 2D MCF models with their respective longitudinal stress S11 (MPa) contour plots. The figure shows MCF models with (a) regular distribution (F1), (b) staggered distribution (F2), and (c) random distribution (F3) of mineral plates within the MF matrix.

Grahic Jump Location
Fig. 8

Effect of the sample number on the mean elastic modulus of MCF under large strain

Grahic Jump Location
Fig. 9

Young's modulus at small strain (ESS) and large strain (ELS) for different MCF models and their comparison with the literature. (a) shows the results of the present study for small and large strain moduli, and (b) compares the small strain elastic modulus values with the literature. (c) and (d) shows the small and large strain elastic modulus histograms, respectively, for model F3.

Grahic Jump Location
Fig. 10

Weibull plot for the elastic modulus data from MCF random model F3 for small strain (SS) and large strain (LS) regimes

Grahic Jump Location
Fig. 11

Effects on the upper scale (MCF) characteristic modulus due to the first and second stage mineralization at the lower (MF) scale

Grahic Jump Location
Fig. 12

Parametric study on the MCF random model: (a) shows the histogram for models having variation in length of mineral plates, (b) shows the histogram for models having variation in the axial gap between mineral plates, and (c) shows the histogram for models having variation in lateral spacing between the mineral plates



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In