0
Research Papers

Abdominal Aortic Aneurysm Endovascular Repair: Profiling Postimplantation Morphometry and Hemodynamics With Image-Based Computational Fluid Dynamics

[+] Author and Article Information
Paola Tasso

Department of Mechanical and
Aerospace Engineering,
Politecnico di Torino,
Torino 10129, Italy
e-mail: paola.tasso@polito.it

Anastasios Raptis

Laboratory for Vascular Simulations,
Institute of Vascular Diseases,
Ioannina 45500, Greece
e-mail: raptistasos@gmail.com

Mitiadis Matsagkas

Department of Vascular Surgery,
Faculty of Medicine,
University of Thessaly,
Larissa 41334, Greece
e-mail: mimats@med.uth.gr

Maurizio Lodi Rizzini

Department of Mechanical and
Aerospace Engineering,
Politecnico di Torino,
Torino 10129, Italy
e-mail: maurizio.lodirizzini@polito.it

Diego Gallo

Department of Mechanical and
Aerospace Engineering,
Politecnico di Torino,
Torino 10129, Italy
e-mail: diego.gallo@polito.it

Michalis Xenos

Department of Mathematics,
University of Ioannina,
Ioannina 45500, Greece
e-mail: mxenos@cc.uoi.gr

Umberto Morbiducci

Department of Mechanical and
Aerospace Engineering,
Politecnico di Torino,
Torino 10129, Italy
e-mail: umberto.morbiducci@polito.it

Manuscript received January 25, 2018; final manuscript received May 21, 2018; published online August 20, 2018. Assoc. Editor: Giuseppe Vairo.

J Biomech Eng 140(11), 111003 (Aug 20, 2018) (12 pages) Paper No: BIO-18-1052; doi: 10.1115/1.4040337 History: Received January 25, 2018; Revised May 21, 2018

Endovascular aneurysm repair (EVAR) has disseminated rapidly as an alternative to open surgical repair for the treatment of abdominal aortic aneurysms (AAAs), because of its reduced invasiveness, low mortality, and morbidity rate. The effectiveness of the endovascular devices used in EVAR is always at question as postoperative adverse events can lead to re-intervention or to a possible fatal scenario for the circulatory system. Motivated by the assessment of the risks related to thrombus formation, here the impact of two different commercial endovascular grafts on local hemodynamics is explored through 20 image-based computational hemodynamic models of EVAR-treated patients (N = 10 per each endograft model). Hemodynamic features, susceptible to promote thrombus formation, such as flow separation and recirculation, are quantitatively assessed and compared with the local hemodynamics established in image-based infrarenal abdominal aortic models of healthy subjects (N = 10). Moreover, the durability of endovascular devices is investigated analyzing the displacement forces (DFs) acting on them. The hemodynamic analysis is complemented by a geometrical characterization of the EVAR-induced reshaping of the infrarenal abdominal aortic vascular region. The findings of this study indicate that (1) the clinically observed propensity to thrombus formation in devices used in EVAR strategies can be explained in terms of local hemodynamics by means of image-based computational hemodynamics approach; (2) reportedly prothrombotic hemodynamic structures are strongly associated with the geometry of the aortoiliac tract postoperatively; and (3) DFs are associated with cross-sectional area of the aortoiliac tract postoperatively. In perspective, our study suggests that future clinical followup studies could include a geometric analysis of the region of the implant, monitoring shape variations that can lead to hemodynamic disturbances of clinical significance.

FIGURES IN THIS ARTICLE
<>
Copyright © 2018 by ASME
Your Session has timed out. Please sign back in to continue.

References

Ailawadi, G. , Eliason, J. L. , and Upchurch, G. R. , 2003, “Current Concepts in the Pathogenesis of Abdominal Aortic Aneurysm,” J. Vasc. Surg., 38(3), pp. 584–588. [CrossRef] [PubMed]
Chaikof, E. L. , Dalman, R. L. , Eskandari, M. K. , Jackson, B. M. , Lee, W. A. , Mansour, M. A. , Mastracci, T. M. , Mell, M. , Murad, M. H. , Nguyen, L. L. , Oderich, G. S. , Patel, M. S. , Schermerhorn, M. L. , and Starnes, B. W. , 2018, “The Society for Vascular Surgery Practice Guidelines on the Care of Patients With an Abdominal Aortic Aneurysm,” J. Vasc. Surg., 67(1), pp. 2–77. [CrossRef] [PubMed]
Powell, J. T. , Sweeting, M. J. , Ulug, P. , Blankensteijn, J. D. , Lederle, F. A. , Becquemin, J. P. , and Greenhalgh, R. M. , 2017, “Meta-Analysis of Individual-Patient Data From Evar-1, Dream, Over and Ace Trials Comparing Outcomes of Endovascular or Open Repair for Abdominal Aortic Aneurysm Over 5 Years,” Br. J. Surg., 104(3), pp. 166–178. [CrossRef] [PubMed]
Chang, R. W. , Goodney, P. , Tucker, L.-Y. , Okuhn, S. , Hua, H. , Rhoades, A. , Sivamurthy, N. , and Hill, B. , 2013, “Ten-Year Results of Endovascular Abdominal Aortic Aneurysm Repair From a Large Multicenter Registry,” J. Vasc. Surg., 58(2), pp. 324–332. [CrossRef] [PubMed]
Budtz-Lilly, J. , Venermo, M. , Debus, S. , Behrendt, C. A. , Altreuther, M. , Beiles, B. , Szeberin, Z. , Eldrup, N. , Danielsson, G. , Thomson, I. , Wigger, P. , Björck, M. , Loftus, I. , and Mani, K. , 2017, “Editor's Choice—Assessment of International Outcomes of Intact Abdominal Aortic Aneurysm Repair Over 9 Years,” Eur. J. Vasc. Endovascular Surg., 54(1), pp. 13–20. [CrossRef]
Kontopodis, N. , Antoniou, S. A. , Georgakarakos, E. , and Ioannou, C. V. , 2015, “Endovascular Vs Open Aneurysm Repair in the Young,” J. Endovascular Ther., 22(6), pp. 897–904. [CrossRef]
Sweeting, M. J. , Balm, R. , Desgranges, P. , Ulug, P. , and Powell, J. T. , 2015, “Individual-Patient Meta-Analysis of Three Randomized Trials Comparing Endovascular Versus Open Repair for Ruptured Abdominal Aortic Aneurysm,” Br. J. Surg., 102(10), pp. 1229–1239. [CrossRef] [PubMed]
Saedon, M. , Mt-Isa, S. , Saratzis, A. , Leung, E. , and Mahmood, A. , 2015, “Outcome of Open Versus Endovascular Abdominal Aortic Aneurysm Repair in Obese Patients: A Systematic Review and Meta-Analysis,” Int. Angiol., 34(1), pp. 9–15. [PubMed]
Rayt, H. S. , Sutton, A. J. , London, N. J. M. , Sayers, R. D. , and Bown, M. J. , 2008, “A Systematic Review and Meta-Analysis of Endovascular Repair (Evar) for Ruptured Abdominal Aortic Aneurysm,” Eur. J. Vasc. Endovascular Surg., 36(5), pp. 536–544. [CrossRef]
Mureebe, L. , Egorova, N. , Giacovelli, J. K. , Gelijns, A. , Kent, K. C. , and McKinsey, J. F. , 2008, “National Trends in the Repair of Ruptured Abdominal Aortic Aneurysms,” J. Vasc. Surg., 48(5), pp. 1101–1107. [CrossRef] [PubMed]
Winterborn, R. J. , Amin, I. , Lyratzopoulos, G. , Walker, N. , Varty, K. , and Campbell, W. B. , 2009, “Preferences for Endovascular (Evar) or Open Surgical Repair Among Patients With Abdominal Aortic Aneurysms Under Surveillance,” J. Vasc. Surg., 49(3), pp. 576–581. [CrossRef] [PubMed]
Desai, M. , Eaton-Evans, J. , Hillery, C. , Bakhshi, R. , You, Z. , Lu, J. , Hamilton, G. , and Seifalian, A. M. , 2010, “Aaa Stent-Grafts: Past Problems and Future Prospects,” Ann. Biomed. Eng., 38(4), pp. 1259–1275. [CrossRef] [PubMed]
Van Marrewijk, C. J. , Leurs, L. J. , Vallabhaneni, S. R. , Harris, P. L. , Buth, J. , and Laheij, R. J. , 2005, “Risk-Adjusted Outcome Analysis of Endovascular Abdominal Aortic Aneurysm Repair in a Large Population: How Do Stent-Grafts Compare?,” J. Endovascular Ther., 12(4), pp. 417–429. [CrossRef]
Efstasios Georgakarakos, A. X. , and Georgiadis, G. S. , 2017, “Estimating the Hemodynamic Influence of Variable Main Body-to-Iliac Limb Length Ratios in Aortic Endografts,” Int. Angiol., 37(1), pp. 41–45. [PubMed]
Raptis, A. , Xenos, M. , Georgakarakos, E. , Kouvelos, G. , Giannoukas, A. , and Matsagkas, M. , 2017, “Hemodynamic Profile of Two Aortic Endografts Accounting for Their Postimplantation Position,” J. Med. Devices., 11(2), p. 021003. [CrossRef]
Bastos, G. F. , Rouwet, E. V. , Metz, R. , Hendriks, J. , Muhs, B. , and Verhagen, H. , 2010, “Device-Specific Outcomes After Endovascular Abdominal Aortic Aneurysm Repair,” J. Cardiovasc. Surg., 51(4), pp. 515–531.
Corbett, T. J. , Callanan, A. , Morris, L. G. , Doyle, B. J. , Grace, P. A. , Kavanagh, E. G. , and McGloughlin, T. M. , 2008, “A Review of the In Vivo and In Vitro Biomechanical Behavior and Performance of Postoperative Abdominal Aortic Aneurysms and Implanted Stent-Grafts,” J. Endovascular Ther., 15(4), pp. 468–484. [CrossRef]
Maleux, G. , Koolen, M. , and Heye, S. , 2009, “Complications After Endovascular Aneurysm Repair,” Semin. Interventional Radiol., 26(1), pp. 003–009. [CrossRef]
Figueroa, C. A. , Taylor, C. A. , Yeh, V. , Chiou, A. J. , Gorrepati, M. L. , and Zarins, C. K. , 2010, “Preliminary 3D Computational Analysis of the Relationship Between Aortic Displacement Force and Direction of Endograft Movement,” J. Vasc. Surg., 51(6), pp. 1488–1497. [CrossRef] [PubMed]
Kandail, H. , Hamady, M. , and Xu, X. Y. , 2014, “Patient-Specific Analysis of Displacement Forces Acting on Fenestrated Stent Grafts for Endovascular Aneurysm Repair,” J. Biomech., 47(14), pp. 3546–3554. [CrossRef] [PubMed]
Molony, D. S. , Kavanagh, E. G. , Madhavan, P. , Walsh, M. T. , and McGloughlin, T. M. , 2010, “A Computational Study of the Magnitude and Direction of Migration Forces in Patient-Specific Abdominal Aortic Aneurysm Stent-Grafts,” Eur. J. Vasc. Endovascular Surg., 40(3), pp. 332–339. [CrossRef]
Morris, L. , Delassus, P. , Walsh, M. , and McGloughlin, T. , 2004, “A Mathematical Model to Predict the In Vivo Pulsatile Drag Forces Acting on Bifurcated Stent Grafts Used in Endovascular Treatment of Abdominal Aortic Aneurysms (Aaa),” J. Biomech., 37(7), pp. 1087–1095. [CrossRef] [PubMed]
Li, Z. , and Kleinstreuer, C. , 2005, “Blood Flow and Structure Interactions in a Stented Abdominal Aortic Aneurysm Model,” Med. Eng. Phys., 27(5), pp. 369–382. [CrossRef] [PubMed]
Raptis, A. , Xenos, M. , Georgakarakos, E. , Kouvelos, G. , Giannoukas, A. , Labropoulos, N. , and Matsagkas, M. , 2016, “Comparison of Physiological and Post-Endovascular Aneurysm Repair Infrarenal Blood Flow,” Comput. Methods Biomech. Biomed. Eng., 20(3), pp. 242–249. [CrossRef]
FDA, 2010, “Summary of Safety and Effectiveness Data,” Food and Drug Administration, Silver Spring, MD, accessed May 31, 2018 , https://www.Accessdata.Fda.Gov/cdrh_docs/pdf10/p100021b.Pdf
FDA, 2002, “Summary of Safety and Effectiveness Data (SSED) EXCLUDER™ Bifurcated Endoprosthesis,” Food and Drug Administration, Silver Spring, MD, accessed May 31, 2018, https://www.Accessdata.Fda.Gov/cdrh_docs/pdf2/p020004b.Pdf
Gallo, D. , Lefieux, A. , Morganti, S. , Veneziani, A. , Reali, A. , Auricchio, F. , Conti, M. , and Morbiducci, U. , 2016, “A Patient-Specific Follow Up Study of the Impact of Thoracic Endovascular Repair (Tevar) on Aortic Anatomy and on Post-Operative Hemodynamics,” Comput. Fluids, 141, pp. 54–61. [CrossRef]
Gallo, D. , Vardoulis, O. , Monney, P. , Piccini, D. , Antiochos, P. , Schwitter, J. , Stergiopulos, N. , and Morbiducci, U. , 2017, “Cardiovascular Morphometry With High-Resolution 3d Magnetic Resonance: First Application to Left Ventricle Diastolic Dysfunction,” Med. Eng. Phys., 47, pp. 64–71. [CrossRef] [PubMed]
Morbiducci, U. , Gallo, D. , Cristofanelli, S. , Ponzini, R. , Deriu, M. A. , Rizzo, G. , and Steinman, D. A. , 2015, “A Rational Approach to Defining Principal Axes of Multidirectional Wall Shear Stress in Realistic Vascular Geometries, With Application to the Study of the Influence of Helical Flow on Wall Shear Stress Directionality in Aorta,” J. Biomech., 48(6), pp. 899–906. [CrossRef] [PubMed]
Sangalli, L. M. , Secchi, P. , Vantini, S. , and Veneziani, A. , 2009, “Efficient Estimation of 3-Dimensional Curves and Their Derivatives by Free Knot Regression Slpines Applied to the Analysis of Inner Carotid Artery Centerlines,” J. R. Stat. Soc., 58(3), pp. 285–306. [CrossRef]
Meng, S. , Geyer, S. H. , Costa, LdF. , Viana, M. P. , and Weninger, W. J. , 2008, “Objective Characterization of the Course of the Parasellar Internal Carotid Artery Using Mathematical Tools,” Surg. Radiol. Anat., 30 (6), pp. 519–526. [CrossRef] [PubMed]
Alastruey, J. , Siggers, J. H. , Peiffer, V. , Doorly, D. J. , and Sherwin, S. J. , 2012, “Reducing the Data: Analysis of the Role of Vascular Geometry on Blood Flow Patterns in Curved Vessels,” Phys. Fluids, 24(3), p. 031902. [CrossRef]
Olufsen, M. S. , Peskin, C. S. , Kim, W. Y. , Pedersen, E. M. , Nadim, A. , and Larsen, J. , 2000, “Numerical Simulation and Experimental Validation of Blood Flow in Arteries With Structured-Tree Outflow Conditions,” Ann. Biomed. Eng., 28(11), pp. 1281–1299. [CrossRef] [PubMed]
Morbiducci, U. , Kok, A. M. , Kwak, B. R. , Stone, P. H. , Steinman, D. A. , and Wentzel, J. J. , 2016, “Atherosclerosis at Arterial Bifurcations: Evidence for the Role of Haemodynamics and Geometry,” Thromb. Haemostasis., 115(3), pp. 484–492. [CrossRef]
Martorell, J. , Santomá, P. , Kolandaivelu, K. , Kolachalama, V. B. , Melgar-Lesmes, P. , Molins, J. J. , Garcia, L. , Edelman, E. R. , and Balcells, M. , 2014, “Extent of Flow Recirculation Governs Expression of Atherosclerotic and Thrombotic Biomarkers in Arterial Bifurcations,” Cardiovasc. Res., 103(1), pp. 37–46. [CrossRef] [PubMed]
Morbiducci, U. , Ponzini, R. , Rizzo, G. , Cadioli, M. , Esposito, A. , Montevecchi, F. M. , and Redaelli, A. , 2010, “Mechanistic Insight Into the Physiological Relevance of Helical Blood Flow in the Human Aorta: An In Vivo Study,” Biomech. Model. Mechanobiol., 10(3), pp. 339–355. [CrossRef] [PubMed]
Liu, X. , Sun, A. , Fan, Y. , and Deng, X. , 2014, “Physiological Significance of Helical Flow in the Arterial System and Its Potential Clinical Applications,” Ann. Biomed. Eng., 43(1), pp. 3–15. [CrossRef] [PubMed]
Gallo, D. , Steinman, D. A. , Bijari, P. B. , and Morbiducci, U. , 2012, “Helical Flow in Carotid Bifurcation as Surrogate Marker of Exposure to Disturbed Shear,” J. Biomech., 45(14), pp. 2398–2404. [CrossRef] [PubMed]
Morbiducci, U. , Gallo, D. , Ponzini, R. , Massai, D. , Antiga, L. , Montevecchi, F. M. , and Redaelli, A. , 2010, “Quantitative Analysis of Bulk Flow in Image-Based Hemodynamic Models of the Carotid Bifurcation: The Influence of Outflow Conditions as Test Case,” Ann. Biomed. Eng., 38(12), pp. 3688–3705. [CrossRef] [PubMed]
Caro, C. G. , Doorly, D. J. , Tarnawski, M. , Scott, K. T. , Long, Q. , and Dumoulin, C. L. , 1996, “Non-Planar Curvature and Braching of Arteries and Non-Planar-Type Flow,” R. Soc., 452(1944), pp. 185–197. [CrossRef]
Morbiducci, U. , Ponzini, R. , Grigioni, M. , and Redaelli, A. , 2007, “Helical Flow as Fluid Dynamic Signature for Atherogenesis Risk in Aortocoronary Bypass. A Numeric Study,” J. Biomech., 40(3), pp. 519–534. [CrossRef] [PubMed]
Morbiducci, U. , Ponzini, R. , Gallo, D. , Bignardi, C. , and Rizzo, G. , 2013, “Inflow Boundary Conditions for Image-Based Computational Hemodynamics: Impact of Idealized Versus Measured Velocity Profiles in the Human Aorta,” J. Biomech., 46(1), pp. 102–109. [CrossRef] [PubMed]
Mann, H. B. , and Whitney, D. R. , 1947, “On a Test of Whether One of Two Random Variables Is Stocastically Larger Than the Other,” Ann. Math. Stat., 18(1), pp. 50–60. [CrossRef]
Shapiro, S. S. , and Wilk, M. B. , 1965, “An Analysis of Variance Test for Normality (Complete Samples),” Biometrica Trust, 52, pp. 591–611. [CrossRef]
Figueroa, C. A. , Taylor, C. A. , Yeh, V. , Chiou, A. J. , and Zaris, C. K. , 2009, “Effect of Curvature on Displacement Forces Acting on Aortic Endografts: A 3-Dimensional Computational Analysis,” J. Endovascular Ther., 16(3), pp. 284–294. [CrossRef]
Mayer, D. , Pfammatter, T. , Rancic, Z. , Hechelhammer, L. , Wilhelm, M. , Veith, F. J. , and Lachat, M. , 2009, “10 Years of Emergency Endovascular Aneurysm Repair for Ruptured Abdominal Aortoiliac Aneurysms: Lessons Learned,” Ann. Surg., 249(3), pp. 510–515. [CrossRef] [PubMed]
Zarins, C. K. , and Taylor, C. A. , 2009, “Endovascular Device Design in the Future: Transformation From Trial and Error to Computational Design,” J. Endovascular Ther., 16(1_Suppl), pp. 12–21.
Howell, B. A. , Kim, T. , Cheer, A. , Dwyer, H. , Saloner, D. , and Chuter, T. A. M. , 2007, “Computational Fluid Dynamics Within Bifurcated Abdominal Aortic Stent-Grafts,” J. Endovascular Ther., 14(2), pp. 138–143. [CrossRef]
Raptis, A. , M, X. , Kouvelos, G. , Giannoukas, A. , and Matsagkas, M. , 2018, “Hemodynamic Performance of Afx and Nellix Endografts: A Computational Fluid Dynamics Study,” Interact. Cardiovasc. Thorac. Surg., 26(5), pp. 826–833. [CrossRef] [PubMed]
Georgakarakos, E. , Xenakis, A. , Manopoulos, C. , Georgiadis, G. S. , Argyriou, C. , Tsangaris, S. , and Lazarides, M. K. , 2014, “Studying the Flow Dynamics in an Aortic Endograft With Crossed-Limbs,” Int. J. Artif. Organs, 37(1), pp. 81–87. [CrossRef] [PubMed]
Aristokleous, N. , Kontopodis, N. G. , Tzirakis, K. , Ioannou, C. V. , and Papaharilaou, Y. , 2015, “Hemodynamic Impact of Abdominal Aortic Aneurysm Stent-Graft Implantation-Induced Stenosis,” Med. Biol. Eng. Comput., 54(10), pp. 1523–1532. [CrossRef] [PubMed]
Segalova, P. A. , Xiong, G. , Rao, K. T. , Zarins, C. K. , and Taylor, C. A. , 2011, “Evaluating Design of Abdominal Aortic Aneurysm Endografts in a Patient-Specific Model Using Computational Fluid Dynamics,” ASME J. Med. Devices, 5(2), p. 027505. [CrossRef]
Segalova, P. A. , Venkateswara Rao, K. T. , Zarins, C. K. , and Taylor, C. A. , 2012, “Computational Modeling of Shear-Based Hemolysis Caused by Renal Obstruction,” ASME J. Biomech. Eng., 134(2), p. 021003. [CrossRef]
Dowson, N. , Boult, M. , Cowled, P. , De Loryn, T. , and Fitridge, R. , 2014, “Development of an Automated Measure of Iliac Artery Tortuosity That Successfully Predicts Early Graft-Related Complications Associated With Endovascular Aneurysm Repair,” Eur. J. Vasc. Endovascular Surg., 48(2), pp. 153–160. [CrossRef]
Karthikesalingam, A. , Holt, P. J. , Vidal-Diez, A. , Choke, E. C. , Patterson, B. O. , Thompson, L. J. , Ghatwary, T. , Bown, M. J. , Sayers, R. D. , and Thompson, M. M. , 2013, “Predicting Aortic Complications After Endovascular Aneurysm Repair,” Br. J. Surg., 100(10), pp. 1302–1311. [CrossRef] [PubMed]
Wyss, T. R. , Dick, F. , Brown, L. C. , and Greenhalgh, R. M. , 2011, “The Influence of Thrombus, Calcification, Angulation, and Tortuosity of Attachment Sites on the Time to the First Graft-Related Complication After Endovascular Aneurysm Repair,” J. Vasc. Surg., 54(4), pp. 965–971. [CrossRef] [PubMed]
Doyle, M. G. , Crawford, S. A. , Osman, E. , Eisenberg, N. , Tse, L. W. , Amon, C. H. , and Forbes, T. L. , 2018, “Analysis of Iliac Artery Geometric Properties in Fenestrated Aortic Stent Graft Rotation,” Vasc. Endovascular Surg., 52(3), pp. 188–194. [CrossRef] [PubMed]
Wu, I. H. , Liang, P. C. , Huang, S. C. , Chi, N. S. , Lin, F. Y. , and Wang, S. S. , 2009, “The Significance of Endograft Geometry on the Incidence of Intraprosthetic Thrombus Deposits After Abdominal Endovascular Grafting,” Eur. J. Vasc. Endovascular Surg., 38(6), pp. 741–747. [CrossRef]
Figueroa, C. A. , and Zarins, C. K. , 2011, “Computational Analysis of Displacement Forces Acting on Endografts Used to Treat Aortic Aneurysms,” Biomech. Mechanobiol. Aneurysms. Stud. Mechanobiol., Tissue Eng. Biomater., 7, pp. 221–246. [CrossRef]
van Bogerijen, G. H. W. , Auricchio, F. , Conti, M. , Lefieux, A. , Reali, A. , Veneziani, A. , Tolenaar, J. L. , Moll, F. L. , Rampoldi, V. , and Trimarchi, S. , 2014, “Aortic Hemodynamics After Thoracic Endovascular Aortic Repair, With Particular Attention to the Bird-Beak Configuration,” J. Endovascular Ther., 21(6), pp. 791–802. [CrossRef]
Mestres, G. , Maeso, J. , Fernandez, V. , Allegue, N. , Constenla, I. , and Matas, M. , 2009, “Incidence and Evolution of Mural Thrombus in Abdominal Aortic Endografts,” Ann. Vasc. Surg., 23(5), pp. 627–633. [CrossRef] [PubMed]
Wegener, M. , Gorich, J. , Kramer, S. , Fleiter, T. , Tomczak, R. , Scharrer-Pamler, R. , Kapfer, X. , and Brambs, H. , 2001, “Thrombus Formation in Aortic Endografts,” J. Endovascular Ther., 8(4), pp. 372–379. [CrossRef]
Maleux, G. , Koolen, M. , Heye, S. , Heremans, B. , and Nevelsteen, A. , 2008, “Mural Thrombotic Deposits in Abdominal Aortic Endografts are Common and Do Not Require Additional Treatment at Short-Term and Midterm Follow-Up,” J. Vasc. Interventional Radiology, 19(11), pp. 1558–1562. [CrossRef]
Méndez Rojano, R. , Mendez, S. , and Nicoud, F. , 2018, “Introducing the Pro-Coagulant Contact System in the Numerical Assessment of Device-Related Thrombosis,” Biomech. Model. Mechanobiol., 17(3), p. 185.
Hansen, K. B. , Arzani, A. , and Shadden, S. C. , 2015, “Mechanical Platelet Activation Potential in Abdominal Aortic Aneurysms,” ASME J. Biomech. Eng., 137(4), p. 041005. [CrossRef]
Diamond, S. L. , Yazdani, A. , Li, H. , Humphrey, J. D. , and Karniadakis, G. E. , 2017, “A General Shear-Dependent Model for Thrombus Formation,” PLOS Comput. Biol., 13(1), p. e1005291. [CrossRef] [PubMed]
Biasetti, J. , Spazzini, P. G. , Swedenborg, J. , and Gasser, T. C. , 2012, “An Integrated Fluid-Chemical Model Toward Modeling the Formation of Intra-Luminal Thrombus in Abdominal Aortic Aneurysms,” Front. Physiol., 3, p. 266. [CrossRef] [PubMed]
Shadden, S. C. , and Hendabadi, S. , 2012, “Potential Fluid Mechanic Pathways of Platelet Activation,” Biomech. Model. Mechanobiol., 12(3), pp. 467–474. [CrossRef] [PubMed]
Taylor, J. O. , Meyer, R. S. , Deutsch, S. , and Manning, K. B. , 2016, “Development of a Computational Model for Macroscopic Predictions of Device-Induced Thrombosis,” Biomech. Model. Mechanobiol., 15(6), pp. 1713–1731. [CrossRef] [PubMed]

Figures

Grahic Jump Location
Fig. 1

Workflow of the methodology applied to characterize hemodynamic and geometric alterations induced by the implanted endografts

Grahic Jump Location
Fig. 2

Image-based models of the investigated iliac bifurcation for (a) healthy subjects, (b) patients treated with Endurant, and (c) patients treated with Excluder

Grahic Jump Location
Fig. 3

Geometric segments for healthy and treated subjects in which the hemodynamic and morphometric analysis is performed: body (identified by the segment upstream of the bifurcation point), left branch, and right branch

Grahic Jump Location
Fig. 4

Three-dimensional visualization of centerlines, colored by curvature values for (a) healthy subjects, (b) endurant and (c) excluder patients. Red and black dots represent, respectively, positive and negative torsion peaks along the centerlines.

Grahic Jump Location
Fig. 5

Peak and mean values of torsion and curvature for the three analyzed groups. Statistical significant differences between groups are indicated: *p-value < 0.05; **p-value < 0.01.

Grahic Jump Location
Fig. 6

Peak and mean values of cross-sectional area and area variation rate for the three analyzed groups. Statistically significant differences between groups are indicated: *p-value < 0.05, **p-value < 0.01.

Grahic Jump Location
Fig. 7

Distribution of TAWSS values at the luminal surface for (a) healthy subjects, (b) endurant and (c) excluder patients. In panel (d), the reported average values of TAWSS over the luminal surface highlight that AWSS is significantly different between endurant and excluder patients (p-value < 0.05).

Grahic Jump Location
Fig. 8

Visualization of recirculation volumes by using negative vmeanax isosurfaces for (a) healthy subjects, (b) endurant and (c) excluder patients. In the insets, axial views are shown, demonstrating protrusion of the recirculation volume into the lumen for Endurant cases. In panel (d), the reported values of mean %VolRec highlight that the volume of recirculation is significantly different in the three groups. Statistically significant difference between groups is indicated: *p-value < 0.05, **p-value < 0.01.

Grahic Jump Location
Fig. 9

Visualization of intravascular LNH isosurfaces for (a) healthy subjects, (b) endurant and (c) excluder patients. Counter-rotating structures are evident in the entire volume of all models: Right-handed helical structures are associated with positive LNH values (blue color) and left-handed helical structures are associated with negative LNH values (red color). In panel (d), the reported helicity intensity values for the three groups highlight that patients treated with the excluder present h2 values statistically different (p-value < 0.05) from both Endurant patients and healthy subjects.

Grahic Jump Location
Fig. 10

Representative examples of wall shear and pressure stresses acting on endograft's wall due to the action of streaming blood at peak systole: (a) Endurant patient EN1 in Fig. 2 and (b) Excluder patient EX9 in Fig. 2. The mapped stresses are integrated over the endograft surface to calculate the total DF.

Tables

Errata

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In