Research Papers

Combined Bone Ingrowth and Remodeling Around Uncemented Acetabular Component: A Multiscale Mechanobiology-Based Finite Element Analysis

[+] Author and Article Information
Kaushik Mukherjee

Department of Mechanical Engineering,
Indian Institute of Technology Kharagpur,
Kharagpur 721 302, West Bengal, India

Sanjay Gupta

Department of Mechanical Engineering,
Indian Institute of Technology Kharagpur,
Kharagpur 721 302, West Bengal, India
e-mail: sangupta@mech.iitkgp.ernet.in

1Corresponding author.

Manuscript received January 11, 2017; final manuscript received June 16, 2017; published online July 26, 2017. Assoc. Editor: Thao (Vicky) Nguyen.

J Biomech Eng 139(9), 091007 (Jul 26, 2017) (12 pages) Paper No: BIO-17-1017; doi: 10.1115/1.4037223 History: Received January 11, 2017; Revised June 16, 2017

Bone ingrowth and remodeling are two different evolutionary processes which might occur simultaneously. Both these processes are influenced by local mechanical stimulus. However, a combined study on bone ingrowth and remodeling has rarely been performed. This study is aimed at understanding the relationship between bone ingrowth and adaptation and their combined influence on fixation of the acetabular component. Based on three-dimensional (3D) macroscale finite element (FE) model of implanted pelvis and microscale FE model of implant–bone interface, a multiscale framework has been developed. The numerical prediction of peri-acetabular bone adaptation was based on a strain-energy density-based formulation. Bone ingrowth in the microscale models was simulated using the mechanoregulatory algorithm. An increase in bone strains near the acetabular rim was observed in the implanted pelvis model, whereas the central part of the acetabulum was observed to be stress shielded. Consequently, progressive bone apposition near the acetabular rim and resorption near the central region were observed. Bone remodeling caused a gradual increase in the implant–bone relative displacements. Evolutionary bone ingrowth was observed around the entire acetabular component. Poor bone ingrowth of 3–5% was predicted around the centro-inferio and inferio-posterio-superio-peripheral regions owing to higher implant–bone relative displacements, whereas the anterio-inferior and centro-superior regions exhibited improved bone ingrowth of 35–55% due to moderate implant–bone relative displacement. For an uncemented acetabular CoCrMo component, bone ingrowth had hardly any effect on bone remodeling; however, bone remodeling had considerable influence on bone ingrowth.

Copyright © 2017 by ASME
Your Session has timed out. Please sign back in to continue.


Wetters, N. G. , Murray, T. G. , Moric, M. , Sporer, S. M. , Paprosky, W. G. , and Della Valle, C. J. , 2013, “ Risk Factors for Dislocation After Revision Total Hip Arthroplasty,” Clin. Orthop. Relat. Res., 471(2), pp. 410–416. [CrossRef] [PubMed]
Dargel, J. , Oppermann, J. , Brüggemann, G. P. , and Eysel, P. , 2014, “ Dislocation Following Total Hip Replacement,” Dtsch. Arztebl. Int., 111(51–52), pp. 884–890. [PubMed]
Long, W. J. , Noiseux, N. O. , Mabry, T. M. , Hanssen, A. D. , and Lewallen, D. G. , 2015, “ Uncemented Porous Tantalum Acetabular Components: Early Follow-Up and Failures in 599 Revision Total Hip Arthroplasties,” Iowa Orthop. J., 35, pp. 108–113. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4492128/ [PubMed]
Unger, A. S. , Lewis, R. J. , and Gruen, T. , 2005, “ Evaluation of a Porous Tantalum Uncemented Acetabular Cup in Revision Total Hip Arthroplasty: Clinical and Radiological Results of 60 Hips,” J. Arthroplasty, 20(8), pp. 1002–1009. [CrossRef] [PubMed]
Engh, C. A. , Griffin, W. L. , and Marx, C. L. , 1990, “ Cementless Acetabular Components,” Bone Joint J., 72B(1), pp. 53–59. http://bjj.boneandjoint.org.uk/content/jbjsbr/72-B/1/53.full.pdf
Liu, X. , and Niebur, G. L. , 2008, “ Bone Ingrowth Into a Porous Coated Implant Predicted by a Mechano-Regulatory Tissue Differentiation Algorithm,” Biomech. Model. Mechanobiol., 7(4), pp. 335–344. [CrossRef] [PubMed]
Janssen, D. , Zwartele, R. E. , Doets, H. C. , and Verdonschot, N. , 2010, “ Computational Assessment of Press-Fit Acetabular Implant Fixation: The Effect of Implant Design, Interference Fit, Bone Quality, and Frictional Properties,” Proc. Inst. Mech. Eng., Part H, 224(1), pp. 65–75. [CrossRef]
Engh, C. A. , Zettl-Schaffer, K. F. , Kukita, Y. , Sweet, D. , Jasty, M. , and Bragdon, C. , 1993, “ Histological and Radiographic Assessment of Well Functioning Porous-Coated Acetabular Components: A Human Postmortem Retrieval Study,” J. Bone Jt. Surg. Am., 75(6), pp. 814–824. [CrossRef]
Hanzlik, J. A. , and Day, J. S. , 2013, “ Bone Ingrowth in Well-Fixed Retrieved Porous Tantalum Implants,” J. Arthroplasty, 28(6), pp. 922–927. [CrossRef] [PubMed]
Mukherjee, K. , and Gupta, S. , 2016, “ Bone Ingrowth Around Porous Coated Acetabular Implant: A Three-Dimensional Finite Element Study Using Mechanoregulatory Algorithm,” Biomech. Model. Mechanobiol., 15(2), pp. 389–403. [CrossRef] [PubMed]
Mukherjee, K. , and Gupta, S. , 2017, “ Mechanobiological Simulations of Peri-Acetabular Bone Ingrowth: A Comparative Analysis of Cell-Phenotype Specific and Phenomenological Algorithms,” Med. Biol. Eng. Comput., 55(3), pp. 449–465. [CrossRef] [PubMed]
Wilkinson, J. M. , Peel, N. F. , Elson, R. A. , Stockley, I. , and Eastell, R. , 2001, “ Measuring Bone Mineral Density of the Pelvis and Proximal Femur After Total Hip Arthroplasty,” J. Bone Jt. Surg. Br., 83(2), pp. 283–288. [CrossRef]
Wright, J. M. , Pellicci, P. M. , Salvati, E. A. , Ghelman, B. , Roberts, M. M. , and Koh, J. L. , 2001, “ Bone Density Adjacent to Press-Fit Acetabular Components: A Prospective Analysis With Quantitative Computer Tomography,” J. Bone Jt. Surg. Am., 83(4), pp. 529–536. [CrossRef]
Meneghini, R. M. , Ford, K. S. , McCollough, C. H. , Hanssen, A. D. , and Lewallen, D. G. , 2010, “ Bone Remodelling Around Porous Metal Cementless Acetabular Component,” J. Arthroplasty, 25(5), pp. 741–747. [CrossRef] [PubMed]
Laursen, M. B. , Nielsen, P. T. , and Søballe, K. , 2007, “ Bone Remodelling Around HA Coated Acetabular Cup,” Int. Orthop., 31(2), pp. 199–204. [CrossRef] [PubMed]
Mulier, M. , Jaecques, S. V. N. , Raaijmaakers, M. , Nijs, J. , van der Perre, G. , and Jonkers, I. , 2011, “ Early Periprosthetic Bone Remodelling Around Cemented and Uncemented Custom-Made Femoral Components and Their Uncemented Acetabular Cups,” Arch. Orthop. Trauma Surg., 131(7), pp. 941–948. [CrossRef] [PubMed]
Ghosh, R. , Mukherjee, K. , and Gupta, S. , 2013, “ Bone Remodelling Around Uncemented Metallic and Ceramic Acetabular Components,” Proc. Inst. Mech. Eng., Part H, 227(5), pp. 490–502. [CrossRef]
Mukherjee, K. , and Gupta, S. , 2016, “ The Effects of Musculoskeletal Loading Regimes on Pre-Clinical Analysis of Acetabular Component,” Proc. Inst. Mech. Eng., Part H, 230(10), pp. 918–929. [CrossRef]
Manley, M. T. , Ong, K. L. , and Kurtz, S. M. , 2006, “ The Potential for Bone Loss in Acetabular Structures Following THA,” Clin. Orthop. Relat. Res., 453, pp. 246–253. [CrossRef] [PubMed]
Ghosh, R. , and Gupta, S. , 2014, “ Bone Remodelling Around Cementless Composite Acetabular Components: The Effects of Implant Geometry and Implant–Bone Interfacial Conditions,” J. Mech. Behav. Biomed. Mater., 32, pp. 257–269. [CrossRef] [PubMed]
Spears, I. R. , Pfleiderer, M. , Schneider, E. , Hailee, E. , and Morlock, M. M. , 2001, “ The Effect of Interfacial Parameters on Cup-Bone Relative Micromotions: A Finite Element Investigation,” J. Biomech., 34(1), pp. 113–120. [CrossRef] [PubMed]
Thompson, M. S. , Northmore-Ball, M. D. , and Tanner, K. E. , 2002, “ Effect of Acetabular Resurfacing Component Material and Fixation on the Strain Distribution in the Pelvis,” Proc. Inst. Mech. Eng., Part H, 216(4), pp. 237–245. [CrossRef]
Pal, B. , and Gupta, S. , 2011, “ The Effect of Primary Stability on Load Transfer and Bone Remodelling Within the Uncemented Resurfaced Femur,” Proc. Inst. Mech. Eng., Part H, 225(6), pp. 549–561. [CrossRef]
Fernandes, P. R. , Folgado, J. , Jacobs, C. , and Pellegrini, V. , 2002, “ A Contact Model With Ingrowth Control for Bone Remodelling Around Cementless Stems,” J. Biomech., 35(2), pp. 167–176. [CrossRef] [PubMed]
Folgado, J. , Fernandes, P. R. , Jacobs, C. R. , and Pellegrini, V. D., Jr. , 2009, “ Influence of Femoral Material and Extent of Porous Coating on Bone Ingrowth and Atrophy in Cementless Total Hip Arthroplasty: An Iterative Finite Element Model,” Comput. Methods Biomech. Biomed. Eng., 12(2), pp. 135–145. [CrossRef]
Tarala, M. , Janssen, D. , and Verdonschot, N. , 2011, “ Balancing Incompatible Endoprosthetic Design Goals: A Combined Ingrowth and Bone Remodeling Simulation,” Med. Eng. Phys., 33(3), pp. 374–380. [CrossRef] [PubMed]
Tarala, M. , Janssen, D. , and Verdonschot, N. , 2013, “ Toward a Method to Simulate the Process of Bone Ingrowth in Cementless THA Using Finite Element Method,” Med. Eng. Phys., 35(4), pp. 543–548. [CrossRef] [PubMed]
Ruben, R. B. , Folgado, J. , and Fernandes, P. R. , 2012, “ On the Optimal Shape of Hip Implants,” J. Biomech., 45(2), pp. 239–246. [CrossRef] [PubMed]
Caouette, C. , Bureau, M. N. , Lavigne, M. , Vendittoli, P. A. , and Nuño, N. , 2013, “ A New Interface Element With Progressive Damage and Osseointegration for Modeling of Interfaces in Hip Resurfacing,” Proc. Inst. Mech. Eng., Part H, 227(3), pp. 209–220. [CrossRef]
Weinans, H. , Huiskes, R. , van Reitbergen, B. , Sumner, D. R. , Turner, T. M. , and Galante, J. O. , 1993, “ Adaptive Bone Remodelling Around Bonded Noncemented Total Hip Arthroplasty: A Comparison Between Animal Experiments and Computer Simulation,” J. Orthop. Res., 11(4), pp. 500–513. [CrossRef] [PubMed]
van Rietbergen, B. , Huiskes, R. , Weinans, H. , Sumner, D. R. , Turner, T. M. , and Galante, J. O. , 1993, “ The Mechanism of Bone Remodelling and Resorption Around Press-Fitted THA Stems,” J. Biomech., 26(4–5), pp. 369–382. [CrossRef] [PubMed]
Claes, L. E. , and Heigele, C. A. , 1999, “ Magnitudes of Local Stress and Strain Along Bony Surfaces Predict the Course and Type of Fracture Healing,” J. Biomech., 32(3), pp. 255–266. [CrossRef] [PubMed]
Lacroix, D. , and Prendergast, P. J. , 2002, “ A Mechano-Regulation Model for Tissue Differentiation During Fracture Healing: Analysis of Gap Size and Loading,” J. Biomech., 35(9), pp. 1163–1171. [CrossRef] [PubMed]
Ghosh, R. , Pal, B. , Ghosh, D. , and Gupta, S. , 2015, “ Finite Element Analysis of a Hemi-Pelvis: The Effect of Inclusion of Cartilage Layer on Acetabular Stresses and Strain,” Comput. Methods Biomech. Biomed. Eng., 18(7), pp. 697–710. [CrossRef]
FDA, 2006, “ Birmingham Hip Resurfacing (BHR) System: Summary of Safety and Effectiveness Data,” U.S. Food and Drug Administration, Rockville, MD, accessed Aug. 21, 2014, http://www.accessdata.fda.gov/cdrh_docs/pdf4/P040033b.pdf
Taddei, F. , Pancanti, A. , and Viceconti, M. , 2004, “ An Improved Method for the Automatic Mapping of Computed Tomography Numbers Onto Finite Element Models,” Med. Eng. Phys., 26(1), pp. 61–69. [CrossRef] [PubMed]
Dalstra, M. , and Huiskes, R. , 1995, “ Load Transfer Across the Pelvis Bone,” J. Biomech., 28(6), pp. 715–724. [CrossRef] [PubMed]
Yew, A. , Jin, Z. M. , Donn, A. , Morlock, M. M. , and Isaac, G. , 2006, “ Deformation of Press-Fitted Metallic Resurfacing Cups—Part 2: Finite Element Simulation,” Proc. Inst. Mech. Eng., Part H, 220(2), pp. 311–319. [CrossRef]
Liu, F. , Jin, Z. , Roberts, P. , and Grigoris, P. , 2006, “ Importance of Head Diameter, Clearance and Cup Wall Thickness in Elastohydrodynamic Lubrication Analysis of Metal-on-Metal Hip Resurfacing Prostheses,” Proc. Inst. Mech. Eng., Part H, 220(6), pp. 695–704. [CrossRef]
Bergmann, G. , Deuretzbacher, G. , Heller, M. , Graichen, F. , Rohlmann, A. , Strauss, J. , and Duda, G. N. , 2001, “ Hip Contact Forces and Gait Patterns From Routine Activities,” J. Biomech., 34(7), pp. 859–871. [CrossRef] [PubMed]
Dostal, W. F. , and Andrews, J. G. , 1981, “ A Three-Dimensional Biomechanical Model of Hip Musculature,” J. Biomech., 14(11), pp. 803–812. [CrossRef] [PubMed]
Clarke, S. G. , Phillips, A. T. M. , and Bull, A. M. J. , 2013, “ Evaluating a Suitable Level of Model Complexity for Finite Element Analysis of the Intact Acetabulum,” Comput. Methods Biomech. Biomed. Eng., 16(7), pp. 717–724. [CrossRef]
Morrison, M. L. , 2006, “ Birmingham Hip Resurfacing System,” Adv. Mater. Process., 164(10), pp. 52–53. http://www.asminternational.org/content/ASM/PortletImages/MPMD/Issues/MPMD16410oct06.pdf
Mukherjee, K. , and Gupta, S. , 2014, “ Simulation of Tissue Differentiation Around Acetabular Cups: The Effects of Implant-Bone Relative Displacement and Polar Gap,” Adv. Biomech. Appl., 1(2), pp. 95–109. [CrossRef]
Puthumanapully, P. K. , 2010, “ Simulation of Tissue Differentiation in Uncemented Hip Implants Based on a Mechanoregulatory Hypothesis,” Ph.D. dissertation, University of Southampton, Southampton, UK.
Tarala, M. , Waanders, D. , Biemond, J. E. , Hannink, G. , Janssen, D. , Buma, P. , and Verdonschot, N. , 2011, “ The Effect of Bone Ingrowth Depth on the Tensile and Shear Strength of the Implant-Bone e-Beam Produced Interface,” J. Mater. Sci. Mater. Med., 22(10), pp. 2339–2346. [CrossRef] [PubMed]
Mukherjee, K. , and Gupta, S. , 2017, “ Influence of Implant Surface Texture Design on Peri-Acetabular Bone Ingrowth: A Mechanobiology Based Finite Element Analysis,” ASME J. Biomech. Eng., 139(3), p. 031006. [CrossRef]
Huiskes, R. , and van Rietbergen, B. , 1995, “ Preclinical Testing of Total Hip Stem: The Effects of Coating Placement,” Clin. Orthop. Relat. Res., 319, pp. 64–76.
Huiskes, R. , Weinans, H. , and van Rietbergen, B. , 1992, “ The Relationship Between Stress Shielding and Bone Resorption Around Total Hip Stems and the Effects of Flexible Materials,” Clin. Orthop. Relat. Res., 274, pp. 124–134.
Martin, R. B. , 1972, “ Effects of Geometric Feedback in Development of Osteoporosis,” J. Biomech., 5(5), pp. 447–455. [CrossRef] [PubMed]
Dickinson, A. , Taylor, A. , and Browne, M. , 2012, “ Implant–Bone Interface Healing and Adaptation in Resurfacing Hip Replacement,” Comput. Methods Biomech. Biomed. Eng., 15(9), pp. 935–947. [CrossRef]
Hori, R. Y. , and Lewis, J. L. , 1982, “ Mechanical Properties of the Fibrous Tissue Found at the Bone-Cement Interface Following Total Joint Replacement,” J. Biomed. Mater. Res., 16(6), pp. 911–927. [CrossRef] [PubMed]
Jurvelin, J. S. , Buschmann, M. D. , and Hunziker, E. B. , 1997, “ Optical and Mechanical Determination of Poisson's Ratio of Adult Bovine Humeral Articular Cartilage,” J. Biomech., 30(3), pp. 235–241. [CrossRef] [PubMed]
Puthumanapully, P. K. , and Browne, M. , 2011, “ Tissue Differentiation Around a Short Stemmed Metaphyseal Loading Implant Employing a Modified Mechanoregulatory Algorithm: A Finite Element Study,” J. Orthop. Res., 29(5), pp. 787–794. [CrossRef] [PubMed]
Chou, H. Y. , and Müftü, S. , 2013, “ Simulation of Peri-Implant Bone Healing Due to Immediate Loading in Dental Implant Treatments,” J. Biomech., 46(14), pp. 871–878. [CrossRef] [PubMed]
Lacroix, D. , and Prendergast, P. J. , 2002, “ Three-Dimensional Simulation of Fracture Repair in the Human Tibia,” Comput. Methods Biomech. Biomed. Eng., 5(5), pp. 369–376. [CrossRef]
Lacroix, D. , Prendergast, P. J. , Li, G. , and Marsh, D. , 2002, “ Biomechanical Model to Simulate Tissue Differentiation and Bone Regeneration: Application to Fracture Healing,” Med. Biol. Eng. Comput., 40(1), pp. 14–21. [CrossRef] [PubMed]
Levenston, M. E. , Beaupre, G. S. , Schurman, D. J. , and Carter, D. R. , 1993, “ Computer Simulations of Stress-Related Bone Remodelling Around Noncemented Acetabular Components,” J. Arthroplasty, 8(6), pp. 595–605. [CrossRef] [PubMed]
Won, C. H. , Hearn, T. C. , and Tile, M. , 1995, “ Micromotion of Cementless Hemispherical Acetabular Components. Does Press-Fit Need Adjunctive Screw Fixation?,” J. Bone Jt. Surg. Br., 77B(3), pp. 484–489. http://bjj.boneandjoint.org.uk/content/jbjsbr/77-B/3/484.full.pdf
Stocks, G. W. , Freeman, M. A. , and Evans, S. J. , 1995, “ Acetabular Cup Migration. Prediction of Aseptic Loosening,” J. Bone Jt. Surg. Br., 77B(6), pp. 853–861. http://bjj.boneandjoint.org.uk/content/jbjsbr/77-B/6/853.full.pdf
Claes, L. E. , Heigele, C. A. , Neidlinger-Wilke, C. , Kaspar, D. , Seidl, W. , Margevicius, K. J. , and Augat, P. , 1998, “ Effects of Mechanical Factors on the Fracture Healing Process,” Clin. Orthop. Relat. Res., 355, pp. S132–S147. [CrossRef]
Claes, L. , Augat, P. , Suger, G. , and Wilke, H. J. , 1997, “ Influence of Size and Stability of the Osteotomy Gap on the Success of Fracture Healing,” J. Orthop. Res., 15(4), pp. 577–584. [CrossRef] [PubMed]
Prendergast, P. J. , Huiskes, R. , and Søballe, K. , 1997, “ Biophysical Stimuli on Cells During Tissue Differentiation at Implant Interfaces,” J. Biomech., 30(6), pp. 539–548. [CrossRef] [PubMed]
Hollister, S. J. , Guldberg, R. E. , Kuelske, C. L. , Caldwell, N. J. , Richards, M. , and Goldstein, S. A. , 1996, “ Relative Effects of Wound Healing and Mechanical Stimulus on Early Bone Response to Porous-Coated Implants,” J. Orthop. Res., 14(4), pp. 654–662. [CrossRef] [PubMed]
Puleo, D. A. , and Nanci, A. , 1999, “ Understanding and Controlling the Bone-Implant Interface,” Biomaterials, 20(23–24), pp. 2311–2321. [CrossRef] [PubMed]
Jasty, M. , Bragdon, C. R. , Burke, D. , O'Connor, D. , Lowenstein, J. , and Harris, W. H. , 1997, “ In Vivo Skeletal Responses to Porous-Surfaced Implants Subjected to Small Induced Motions,” J. Bone Jt. Surg. Am., 79(5), pp. 707–714. [CrossRef]
Jasty, M. , Bragdon, C. R. , Maloney, W. J. , Haire, T. , and Harris, W. H. , 1991, “ Ingrowth of Bone in Failed Fixation of Porous-Coated Femoral Components,” J. Bone Jt. Surg. Am., 73(9), pp. 1331–1337. [CrossRef]
Bragdon, C. R. , Jasty, M. , Greene, M. , Rubash, H. E. , and Harris, W. H. , 2004, “ Biologic Fixation of Total Hip Implants: Insights Gained From a Series of Canine Studies,” J. Bone Jt. Surg. Am., 86(Suppl. 2), pp. 105–117. [CrossRef]


Grahic Jump Location
Fig. 1

The multiscale framework: (a) the macroscale implanted pelvis model and microscale implant-bone interface model and (b) calculation of equivalent stiffness of the implant layer in the macroscale model

Grahic Jump Location
Fig. 2

Computational scheme for combined bone ingrowth and remodeling simulation

Grahic Jump Location
Fig. 3

The scheme for interpretation of results: (a) four regions of interests (ROI) for interpreting bone remodeling and implant–bone micromotion results and (b) 13 peri-acetabular regions for interpreting the evolutionary bone ingrowth results

Grahic Jump Location
Fig. 4

Bone density distribution in the implanted acetabulum, lateral view, and sectional view: (a) immediate postoperative and (b) after equilibrium in combined simulation. The evolutionary bone resorption in the central (polar) acetabular region (encircled area) is presented graphically in the inset.

Grahic Jump Location
Fig. 5

Implant–bone total relative displacement distribution in the implanted pelvis: (a) immediate postoperative period and (b) after equilibrium in combined simulation

Grahic Jump Location
Fig. 6

Peri-acetabular bone ingrowth in the 13 regions after equilibrium in combined simulation: (a) amount of bone ingrowth percentage and (b) average tissue Young's modulus

Grahic Jump Location
Fig. 7

Evolutionary bone ingrowth in different peri-acetabular regions

Grahic Jump Location
Fig. 8

The distribution of the newly formed tissues in different peri-acetabular regions after equilibrium in combined simulation



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In