Research Papers

Toward the Virtual Benchmarking of Pneumatic Ventricular Assist Devices: Application of a Novel Fluid–Structure Interaction-Based Strategy to the Penn State 12 cc Device

[+] Author and Article Information
Alessandro Caimi

Department of Electronics,
Information and Bioengineering,
Politecnico di Milano,
Milano 20133, Italy
e-mail: alessandro.caimi@polimi.it

Francesco Sturla

Department of Electronics,
Information and Bioengineering,
Politecnico di Milano,
Milano 20133, Italy
e-mail: francesco.sturla@polimi.it

Bryan Good

Department of Biomedical Engineering,
The Pennsylvania State University,
State College, PA 16802
e-mail: bcg5069@psu.edu

Marco Vidotto

Department of Electronics,
Information and Bioengineering,
Politecnico di Milano,
Milano 20133, Italy
e-mail: marco.vidotto@polimi.it

Rachele De Ponti

Department of Electronics,
Information and Bioengineering,
Politecnico di Milano,
Milano 20133, Italy
e-mail: rachele.deponti@mail.polimi.it

Filippo Piatti

Department of Electronics,
Information and Bioengineering,
Politecnico di Milano,
Milano 20133, Italy
e-mail: filippo.piatti@polimi.it

Keefe B. Manning

Department of Biomedical Engineering,
The Pennsylvania State University,
University Park, PA 16802
e-mail: kbm10@psu.edu

Alberto Redaelli

Department of Electronics,
Information and Bioengineering,
Politecnico di Milano,
Milano 20133, Italy
e-mail: alberto.redaelli@polimi.it

1Corresponding author.

Manuscript received January 27, 2017; final manuscript received May 18, 2017; published online June 16, 2017. Assoc. Editor: Ching-Long Lin.

J Biomech Eng 139(8), 081008 (Jun 16, 2017) (10 pages) Paper No: BIO-17-1034; doi: 10.1115/1.4036936 History: Received January 27, 2017; Revised May 18, 2017

The pediatric use of pneumatic ventricular assist devices (VADs) as a bridge to heart transplant still suffers for short-term major complications such as bleeding and thromboembolism. Although numerical techniques are increasingly exploited to support the process of device optimization, an effective virtual benchmark is still lacking. Focusing on the 12 cc Penn State pneumatic VAD, we developed a novel fluid–structure interaction (FSI) model able to capture the device functioning, reproducing the mechanical interplay between the diaphragm, the blood chamber, and the pneumatic actuation. The FSI model included the diaphragm mechanical response from uniaxial tensile tests, realistic VAD pressure operative conditions from a dedicated mock loop system, and the behavior of VAD valves. Our FSI-based benchmark effectively captured the complexity of the diaphragm dynamics. During diastole, the initial slow diaphragm retraction in the air chamber was followed by a more rapid phase; asymmetries were noticed in the diaphragm configuration during its systolic inflation in the blood chamber. The FSI model also captured the major features of the device fluid dynamics. In particular, during diastole, a rotational wall washing pattern is promoted by the penetrating inlet jet with a low-velocity region located in the center of the device. Our numerical analysis of the 12 cc Penn State VAD points out the potential of the proposed FSI approach well resembling previous experimental evidences; if further tested and validated, it could be exploited as a virtual benchmark to deepen VAD-related complications and to support the ongoing optimization of pediatric devices.

Copyright © 2017 by ASME
Your Session has timed out. Please sign back in to continue.


Colvin, M. , Smith, J. M. , Skeans, M. A. , Edwards, L. B. , Uccellini, K. , Snyder, J. J. , Israni, A. K. , and Kasiske, B. L. , 2017, “ OPTN/SRTR 2015 Annual Data Report: Heart,” Am. J. Transplant., 17(Suppl. 1), pp. 286–356. [CrossRef] [PubMed]
Fraser, C. D., Jr. , Jaquiss, R. D. , Rosenthal, D. N. , Humpl, T. , Canter, C. E. , Blackstone, E. H. , Naftel, D. C. , Ichord, R. N. , Bomgaars, L. , Tweddell, J. S. , Massicotte, M. P. , Turrentine, M. W. , Cohen, G. A. , Devaney, E. J. , Pearce, F. B. , Carberry, K. E. , Kroslowitz, R. , and Almond, C. S. , 2012, “ Prospective Trial of a Pediatric Ventricular Assist Device,” N. Engl. J. Med., 367(6), pp. 532–541. [CrossRef] [PubMed]
Canter, C. E. , Shaddy, R. E. , Bernstein, D. , Hsu, D. T. , Chrisant, M. R. , Kirklin, J. K. , Kanter, K. R. , Higgins, R. S. , Blume, E. D. , Rosenthal, D. N. , Boucek, M. M. , Uzark, K. C. , Friedman, A. H. , and Young, J. K. , 2007, “ Indications for Heart Transplantation in Pediatric Heart Disease: A Scientific Statement From the American Heart Association Council on Cardiovascular Disease in the Young; the Councils on Clinical Cardiology, Cardiovascular Nursing, and Cardiovascular Surgery and Anesthesia; and the Quality of Care and Outcomes Research Interdisciplinary Working Group,” Circulation, 115(5), pp. 658–676. [CrossRef] [PubMed]
Mah, D. , Singh, T. P. , Thiagarajan, R. R. , Gauvreau, K. , Piercey, G. E. , Blume, E. D. , Fynn-Thompson, F. , and Almond, C. S. , 2009, “ Incidence and Risk Factors for Mortality in Infants Awaiting Heart Transplantation in the USA,” J. Heart Lung Transplant., 28(12), pp. 1292–1298. [CrossRef] [PubMed]
Potapov, E. V. , Stiller, B. , and Hetzer, R. , 2007, “ Ventricular Assist Devices in Children: Current Achievements and Future Perspectives,” Pediatr. Transplant., 11(3), pp. 241–255. [CrossRef] [PubMed]
Blume, E. D. , Rosenthal, D. N. , Rossano, J. W. , Baldwin, J. T. , Eghtesady, P. , Morales, D. L. , Cantor, R. S. , Conway, J. , Lorts, A. , Almond, C. S. , Naftel, D. C. , and Kirklin, J. K. , 2016, “ Outcomes of Children Implanted With Ventricular Assist Devices in the United States: First Analysis of the Pediatric Interagency Registry for Mechanical Circulatory Support (PediMACS),” J. Heart Lung Transplant., 35(5), pp. 578–584. [CrossRef] [PubMed]
Morales, D. L. , Almond, C. S. , Jaquiss, R. D. , Rosenthal, D. N. , Naftel, D. C. , Massicotte, M. P. , Humpl, T. , Turrentine, M. W. , Tweddell, J. S. , Cohen, G. A. , Kroslowitz, R. , Devaney, E. J. , Canter, C. E. , Fynn-Thompson, F. , Reinhartz, O. , Imamura, M. , Ghanayem, N. S. , Buchholz, H. , Furness, S. , Mazor, R. , Gandhi, S. K. , and Fraser, C. D., Jr. , 2011, “ Bridging Children of All Sizes to Cardiac Transplantation: The Initial Multicenter North American Experience With the Berlin Heart EXCOR Ventricular Assist Device,” J. Heart Lung Transplant., 30(1), pp. 1–8. [CrossRef] [PubMed]
Gaines, W. E. , Pierce, W. S. , Donachy, J. H. , Rosenberg, G. , Landis, D. L. , Richenbacher, W. E. , and Waldhausen, J. A. , 1985, “ The Pennsylvania State University Paracorporeal Ventricular Assist Pump: Optimal Methods of Use,” World J. Surg., 9(1), pp. 47–53. [CrossRef] [PubMed]
McBride, L. R. , Naunheim, K. S. , Fiore, A. C. , Moroney, D. A. , and Swartz, M. T. , 1999, “ Clinical Experience With 111 Thoratec Ventricular Assist Devices,” Ann. Thorac. Surg., 67(5), pp. 1233–1238. [CrossRef] [PubMed]
Weiss, W. J. , Carney, E. L. , Clark, J. B. , Peterson, R. , Cooper, T. K. , Nifong, T. P. , Siedlecki, C. A. , Hicks, D. , Doxtater, B. , Lukic, B. , Yeager, E. , Reibson, J. , Cysyk, J. , Rosenberg, G. , and Pierce, W. S. , 2012, “ Chronic In Vivo Testing of the Penn State Infant Ventricular Assist Device,” ASAIO J., 58(1), pp. 65–72. [CrossRef] [PubMed]
Cooper, B. T. , Roszelle, B. N. , Long, T. C. , Deutsch, S. , and Manning, K. B. , 2010, “ The Influence of Operational Protocol on the Fluid Dynamics in the 12 cc Penn State Pulsatile Pediatric Ventricular Assist Device: The Effect of End-Diastolic Delay,” Artif. Organs, 34(4), pp. E122–E133.
Deutsch, S. , Tarbell, J. M. , Manning, K. B. , Rosenberg, G. , and Fontaine, A. A. , 2006, “ Experimental Fluid Mechanics of Pulsatile Artificial Blood Pumps,” Annu. Rev. Fluid Mech., 38(1), pp. 65–86. [CrossRef]
Roszelle, B. N. , Cooper, B. T. , Long, T. C. , Deutsch, S. , and Manning, K. B. , 2008, “ The 12 cc Penn State Pulsatile Pediatric Ventricular Assist Device: Flow Field Observations at a Reduced Beat Rate With Application to Weaning,” ASAIO J., 54(3), pp. 325–331. [CrossRef] [PubMed]
Roszelle, B. N. , Deutsch, S. , and Manning, K. B. , 2010, “ A Parametric Study of Valve Orientation on the Flow Patterns of the Penn State Pulsatile Pediatric Ventricular Assist Device,” ASAIO J., 56(4), pp. 356–363. [PubMed]
Roszelle, B. N. , Deutsch, S. , and Manning, K. B. , 2010, “ Flow Visualization of Three-Dimensionality Inside the 12 cc Penn State Pulsatile Pediatric Ventricular Assist Device,” Ann. Biomed. Eng., 38(2), pp. 439–455. [CrossRef] [PubMed]
Hochareon, P. , Manning, K. B. , Fontaine, A. A. , Deutsch, S. , and Tarbell, J. M. , 2003, “ Diaphragm Motion Affects Flow Patterns in an Artificial Heart,” Artif. Organs, 27(12), pp. 1102–1109. [CrossRef] [PubMed]
Schonberger, M. , Deutsch, S. , and Manning, K. B. , 2012, “ The Influence of Device Position on the Flow Within the Penn State 12 cc Pediatric Ventricular Assist Device,” ASAIO J., 58(5), pp. 481–493. [CrossRef] [PubMed]
Avrahami, I. , Rosenfeld, M. , Raz, S. , and Einav, S. , 2006, “ Numerical Model of Flow in a Sac-Type Ventricular Assist Device,” Artif. Organs, 30(7), pp. 529–538. [CrossRef] [PubMed]
Donahue, T. L. , Rosenberg, G. , Jacobs, C. R. , and Weiss, W. J. , 2003, “ Finite Element Analysis of Stresses Developed in Blood Sacs of a Pusherplate Blood Pump,” Comput. Methods Biomech. Biomed. Eng., 6(1), pp. 7–15. [CrossRef]
Marom, G. , Chiu, W. C. , Crosby, J. R. , DeCook, K. J. , Prabhakar, S. , Horner, M. , Slepian, M. J. , and Bluestein, D. , 2014, “ Numerical Model of Full-Cardiac Cycle Hemodynamics in a Total Artificial Heart and the Effect of Its Size on Platelet Activation,” J. Cardiovasc. Transl. Res., 7(9), pp. 788–796. [CrossRef] [PubMed]
Long, C. C. , Marsden, A. L. , and Bazilevs, Y. , 2014, “ Shape Optimization of Pulsatile Ventricular Assist Devices Using FSI to Minimize Thrombotic Risk,” Comput. Mech., 54(4), pp. 921–932. [CrossRef]
Long, C. C. , Marsden, A. L. , and Bazilevs, Y. , 2013, “ Fluid–Structure Interaction Simulation of Pulsatile Ventricular Assist Devices,” Comput. Mech., 52(5), pp. 971–981. [CrossRef]
Haut Donahue, T. L. , Dehlin, W. , Gillespie, J. , Weiss, W. J. , and Rosenberg, G. , 2009, “ Finite Element Analysis of Stresses Developed in the Blood Sac of a Left Ventricular Assist Device,” Med. Eng. Phys., 31(4), pp. 454–460. [CrossRef] [PubMed]
Medvitz, R. B. , Kreider, J. W. , Manning, K. B. , Fontaine, A. A. , Deutsch, S. , and Paterson, E. G. , 2007, “ Development and Validation of a Computational Fluid Dynamics Methodology for Simulation of Pulsatile Left Ventricular Assist Devices,” ASAIO J., 53(2), pp. 122–131. [CrossRef] [PubMed]
Avrahami, I. , Rosenfeld, M. , and Einav, S. , 2006, “ The Hemodynamics of the Berlin Pulsatile VAD and the Role of Its MHV Configuration,” Ann. Biomed. Eng., 34(9), pp. 1373–1388. [CrossRef] [PubMed]
Rosenberg, G. , Phillips, W. , Landis, D. , and Pierce, W. S. , 1981, “ Design and Evaluation of the Pennsylvania State University Mock Circulatory System,” ASAIO J., 4(2), pp. 41–49.
Abraham, G. A. , Frontini, P. M. , and Cuadrado, T. R. , 1997, “ Physical and Mechanical Behavior of Sterilized Biomedical Segmented Polyurethanes,” J. Appl. Polym. Sci., 65(6), pp. 1193–1203. [CrossRef]
Roland, C. M. , Twigg, J. N. , Vu, Y. , and Mott, P. H. , 2007, “ High Strain Rate Mechanical Behavior of Polyurea,” Polymer, 48(2), pp. 574–578. [CrossRef]
Wu, W. , Pott, D. , Mazza, B. , Sironi, T. , Dordoni, E. , Chiastra, C. , Petrini, L. , Pennati, G. , Dubini, G. , Steinseifer, U. , Sonntag, S. , Kuetting, M. , and Migliavacca, F. , 2016, “ Fluid–Structure Interaction Model of a Percutaneous Aortic Valve: Comparison With an In Vitro Test and Feasibility Study in a Patient-Specific Case,” Ann. Biomed. Eng., 44(2), pp. 590–603. [CrossRef] [PubMed]
Sturla, F. , Votta, E. , Stevanella, M. , Conti, C. A. , and Redaelli, A. , 2013, “ Impact of Modeling Fluid–Structure Interaction in the Computational Analysis of Aortic Root Biomechanics,” Med. Eng. Phys., 35(12), pp. 1721–1730. [CrossRef] [PubMed]
Piatti, F. , Sturla, F. , Marom, G. , Sheriff, J. , Claiborne, T. E. , Slepian, M. J. , Redaelli, A. , and Bluestein, D. , 2015, “ Hemodynamic and Thrombogenic Analysis of a Trileaflet Polymeric Valve Using a Fluid–Structure Interaction Approach,” J. Biomech., 48(13), pp. 3650–3658. [CrossRef] [PubMed]
Lau, K. D. , Diaz, V. , Scambler, P. , and Burriesci, G. , 2010, “ Mitral Valve Dynamics in Structural and Fluid–Structure Interaction Models,” Med. Eng. Phys., 32(9), pp. 1057–1064. [CrossRef] [PubMed]
Weinberg, E. J. , and Kaazempur Mofrad, M. R. , 2007, “ Transient, Three-Dimensional, Multiscale Simulations of the Human Aortic Valve,” Cardiovasc. Eng., 7(4), pp. 140–155. [CrossRef] [PubMed]
Einstein, D. R. , Kunzelman, K. S. , Reinhall, P. G. , Nicosia, M. A. , and Cochran, R. P. , 2005, “ Non-Linear Fluid-Coupled Computational Model of the Mitral Valve,” J. Heart Valve Dis., 14(3), pp. 376–385. [PubMed]
Hallquist, J. O. , 2006, “ Simplified Arbitrary Lagrangian–Eulerian,” LS-DYNA Theory Manual, Livermore Software Technology Corporation (LSTC), Livermore, CA, Chap. 14.
Marom, G. , 2015, “ Numerical Methods for Fluid–Structure Interaction Models of Aortic Valves,” Arch. Comput. Methods Eng., 22(4), pp. 595–620. [CrossRef]
Hallquist, J. O. , 2007, LS-DYNA Keyword User's Manual, Livermore Software Technology Corporation (LSTC), Livermore, CA.
Wu, J. , Liu, J. , and Du, Y. , 2007, “ Experimental and Numerical Study on the Flight and Penetration Properties of Explosively-Formed Projectile,” Int. J. Impact Eng., 34(7), pp. 1147–1162. [CrossRef]
Daily, B. B. , Pettitt, T. W. , Sutera, S. P. , and Pierce, W. S. , 1996, “ Pierce-Donachy Pediatric VAD: Progress in Development,” Ann. Thorac. Surg., 61(1), pp. 437–443. [CrossRef] [PubMed]
Bluestein, D. , Chandran, K. B. , and Manning, K. B. , 2010, “ Towards Non-Thrombogenic Performance of Blood Recirculating Devices,” Ann. Biomed. Eng., 38(3), pp. 1236–1256. [CrossRef] [PubMed]
Liu, Q. , Runt, J. , Felder, G. , Rosenberg, G. , Snyder, A. J. , Weiss, W. J. , Lewis, J. , and Werley, T. , 2000, “ In Vivo and In Vitro Stability of Modified Poly(urethaneurea) Blood Sacs,” J. Biomater. Appl., 14(4), pp. 349–366. [CrossRef] [PubMed]
Bachmann, C. , Hugo, G. , Rosenberg, G. , Deutsch, S. , Fontaine, A. , and Tarbell, J. M. , 2000, “ Fluid Dynamics of a Pediatric Ventricular Assist Device,” Artif. Organs, 24(5), pp. 362–372. [CrossRef] [PubMed]
Baldwin, J. T. , Borovetz, H. S. , Duncan, B. W. , Gartner, M. J. , Jarvik, R. K. , Weiss, W. J. , and Hoke, T. R. , 2006, “ The National Heart, Lung, and Blood Institute Pediatric Circulatory Support Program,” Circulation, 113(1), pp. 147–155. [CrossRef] [PubMed]
Fraser, K. H. , Taskin, M. E. , Griffith, B. P. , and Wu, Z. J. , 2011, “ The Use of Computational Fluid Dynamics in the Development of Ventricular Assist Devices,” Med. Eng. Phys., 33(3), pp. 263–280. [CrossRef] [PubMed]
Konig, C. S. , Clark, C. , and Mokhtarzadeh-Dehghan, M. R. , 1999, “ Investigation of Unsteady Flow in a Model of a Ventricular Assist Device by Numerical Modelling and Comparison With Experiment,” Med. Eng. Phys., 21(1), pp. 53–64. [CrossRef] [PubMed]
Behbahani, M. , Behr, M. , Hormes, M. , Steinseifer, U. , Arora, D. , Coronado, O. , and Pasquali, M. , 2009, “ A Review of Computational Fluid Dynamics Analysis of Blood Pumps,” Eur. J. Appl. Math., 20(4), pp. 363–397. [CrossRef]
Medvitz, R. B. , Reddy, V. , Deutsch, S. , Manning, K. B. , and Paterson, E. G. , 2009, “ Validation of a CFD Methodology for Positive Displacement LVAD Analysis Using PIV Data,” ASME J. Biomech. Eng., 131(11), p. 111009. [CrossRef]


Grahic Jump Location
Fig. 1

Geometrical model of the Penn State 12 cc pVAD: (a) acrylic model of the device for in vitro tests at the Artificial Heart Lab; (b) top view of the device pointing out the diaphragm diameter (dpVAD) and the position of the mitral (MV) and aortic (AV) ports; (c) frontal view of the computer-aided design model reporting the height of both air (hair) and blood (hblood) chambers. A detail view of the tilting disk valves (rv, disk radius) is reported on the left (MV) and on the right (AV), highlighting the axis of rotation on each valve disk (dv, distance between the center of the valve and the rotational axis).

Grahic Jump Location
Fig. 2

(a) Numerical 12 cc pVAD FSI model: The pVAD case is immersed in a control volume consisting of the fluid domain (green grid), the air reservoir (light blue grid), the mitral (yellow grid), and the aortic (red grid) reservoirs. (b) Boundary conditions extracted from the in vitro benchmark and adopted in the FSI model: pressure time-dependent waveforms and the observed opening and closing timing of the tilting disk valves. (c) Experimental uniaxial tensile tests performed on the five diaphragm samples; (d) stress–strain response for each sample and the linear elastic approximation in the strain range 0–50% (see color figure online).

Grahic Jump Location
Fig. 3

Contour maps of von Mises stress (σVM, left column), circumferential strain (εcirc, central column), and radial strain (εrad, right column) computed on the pVAD diaphragm from diastolic pVAD filling (t = 650 ms) up to the peak of systolic ejection (t = 1000 ms)

Grahic Jump Location
Fig. 4

(a) Time course of the diaphragm profile, along two diametrical principal axes, during both diastole (550–750 ms) and systole (850–1050 ms). For each point of the profile, the Yp coordinate, i.e., normal to the diaphragm housing plane, and RN, i.e., normalized membrane radius, are computed. (b) Diastolic diaphragm opening (DO) averaged on nine equidistant points selected on the central portion of the diaphragm (see color figure online).

Grahic Jump Location
Fig. 5

(a) Time-dependent waveforms of flow rate extracted at the inflow, i.e., mitral valve (top panel), and at the outflow, i.e., aortic valve (bottom panel), from the in vitro mock loop (light blue) and from the numerical model (red); (b) contour maps of the velocity field computed at the 11 mm parallel plane cross section during the diastolic filling phase of the device (t = 650, 700, 750, 800 ms) and the first instants of the systolic ejection phase (t = 850, 900 ms) (see color figure online)

Grahic Jump Location
Fig. 6

Visualization of the 3D fluid dynamics of the device during the diastolic filling phase (t = 600, 700, 800 ms) by means of (a) pathlines injected from the location of the mitral port and (b) two velocity magnitude isosurfaces (λ1 = 0.5 m/s, brown; λ2 = 1 m/s, green) (see color figure online)

Grahic Jump Location
Fig. 7

Preliminary comparison between the computed FSI results and ground-truth in vitro data collected on the 12 cc Penn State prototype: (a) maximum diaphragm excursion (i.e., YP coordinate) at systole, as computed on both the diametrical diaphragm axes from the FSI model (dashed line) and high-speed video acquisitions (continuous line); (b) fluid dynamic comparison between the simulated FSI model and data from particle image velocimetry, during diastole (left panel) and systole (right panel), respectively



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In