Research Papers

Tensile Mechanical Properties and Dynamic Collagen Fiber Re-Alignment of the Murine Cervix Are Dramatically Altered Throughout Pregnancy

[+] Author and Article Information
Carrie E. Barnum, Jennifer L. Fey, Stephanie N. Weiss, Snehal S. Shetye

McKay Orthopedic Research Laboratory,
University of Pennsylvania,
Philadelphia, PA 19104

Guillermo Barila, Amy G. Brown, Michal A. Elovitz

Maternal and Child Health Research Program,
Department of Obstetrics and Gynecology,
Perelman School of Medicine,
University of Pennsylvania,
Philadelphia, PA 19104

Brianne K. Connizzo

McKay Orthopedic Research Laboratory,
University of Pennsylvania,
Philadelphia, PA 19104;
Department of Biological Engineering,
Massachusetts Institute of Technology,
Cambridge, MA 02139

Louis J. Soslowsky

McKay Orthopedic Research Laboratory,
University of Pennsylvania,
Philadelphia, PA 19104
e-mail: soslowsk@upenn.edu

1Corresponding author.

Manuscript received July 27, 2016; final manuscript received April 6, 2017; published online April 27, 2017. Assoc. Editor: Steven D. Abramowitch.

J Biomech Eng 139(6), 061008 (Apr 27, 2017) (7 pages) Paper No: BIO-16-1319; doi: 10.1115/1.4036473 History: Received July 27, 2016; Revised April 06, 2017

The cervix is a unique organ able to dramatically change its shape and function by serving as a physical barrier for the growing fetus and then undergoing dramatic dilation allowing for delivery of a term infant. As a result, the cervix endures changing mechanical forces from the growing fetus. There is an emerging concept that the cervix may change or remodel “early” in many cases of spontaneous preterm birth (sPTB). However, the mechanical role of the cervix in both normal and preterm birth remains unclear. Therefore, the primary objective of this study was to determine the mechanical and structural responses of murine cervical tissue throughout a normal gestational time course. In this study, both tissue structural and material properties were determined via a quasi-static tensile load-to-failure test, while simultaneously obtaining dynamic collagen fiber re-alignment via cross-polarization imaging. This study demonstrated that the majority of the mechanical properties evaluated decreased at midgestation and not just at term, while collagen fiber re-alignment occurred earlier in the loading curve for cervices at term. This suggests that although structural changes in the cervix occur throughout gestation, the differences in material properties function in combination with collagen fiber re-alignment as mechanical precursors to regulate term gestation. This work lays a foundation for investigating cervical biomechanics and the role of the cervix in preterm birth.

Copyright © 2017 by ASME
Your Session has timed out. Please sign back in to continue.


National Center for Health Statistics, 2015, “Final Natality Data,” National Center for Health Statistics, Atlanta, GA, accessed July 1, 2015, www.marchofdimes.org/peristats
Orchinik, L. J. , Taylor, H. G. , Espy, K. A. , Minich, N. , Klein, N. , Sheffield, T. , and Hack, M. , 2011, “ Cognitive Outcomes for Extremely Preterm/Extremely Low Birth Weight Children in Kindergarten,” J. Int. Neuropsychol. Soc., 17(6), pp. 1067–1079. [CrossRef] [PubMed]
Goldenberg, R. L. , Iams, J. D. , Mercer, B. M. , Meis, P. J. , Moawad, A. H. , Copper, R. L. , Das, A. , Thom, E. , Johnson, F. , McNellis, D. , Miodovnik, M. , Van Dorsten, J. P. , Caritis, S. N. , Thurnau, G. R. , and Bottoms, S. F. , 1998, “ The Preterm Prediction Study: The Value of New versus Standard Risk Factors in Predicting Early and all Spontaneous Preterm Births. NICHD MFMU Network,” Am. J. Public Health, 88(2), pp. 233–238. [CrossRef] [PubMed]
Meis, P. J. , Goldenberg, R. L. , Mercer, B. , Moawad, A. , Das, A. , McNellis, D. , Johnson, F. , Iams, J. D. , Thom, E. , and Andrews, W. W. , 1995, “ The Preterm Prediction Study: Significance of Vaginal Infections,” Am. J. Obstet. Gynecol., 173(4), pp. 1231–1235. [CrossRef] [PubMed]
Mercer, B. M. , Goldenberg, R. L. , Das, A. , Moawad, A. H. , Iams, J. D. , Meis, P. J. , Copper, R. L. , Johnson, F. , Thom, E. , McNellis, D. , Miodovnik, M. , Menard, M. K. , Caritis, S. N. , Thurnau, G. R. , Bottoms, S. F. , and Roberts, J. , 1996, “ The Preterm Prediction Study: A Clinical Risk Assessment System,” Am. J. Obstet. Gynecol., 174(6), pp. 1885–1893; discussion 1893–1885. [CrossRef] [PubMed]
Goldenberg, R. L. , Culhane, J. F. , Iams, J. D. , and Romero, R. , 2008, “ Epidemiology and Causes of Preterm Birth,” Lancet, 371(9606), pp. 75–84. [CrossRef] [PubMed]
Hyman, R. W. , Fukushima, M. , Jiang, H. , Fung, E. , Rand, L. , Johnson, B. , Vo, K. C. , Caughey, A. B. , Hilton, J. F. , Davis, R. W. , and Giudice, L. C. , 2014, “ Diversity of the Vaginal Microbiome Correlates With Preterm Birth,” Reprod. Sci., 21(1), pp. 32–40. [CrossRef] [PubMed]
Ghartey, J. , Bastek, J. A. , Brown, A. G. , Anglim, L. , and Elovitz, M. A. , 2015, “ Women With Preterm Birth Have a Distinct Cervicovaginal Metabolome,” Am. J. Obstet. Gynecol., 212(6), pp. 776.e1–776.e12. [CrossRef]
Zork, N. M. , Myers, K. M. , Yoshida, K. , Cremers, S. , Jiang, H. , Ananth, C. V. , Wapner, R. J. , Kitajewski, J. , and Vink, J. , 2015, “ A Systematic Evaluation of Collagen Cross-Links in the Human Cervix,” Am. J. Obstet. Gynecol., 212(3), pp. 321.e1–321.e8. [CrossRef]
Myers, K. M. , Feltovich, H. , Mazza, E. , Vink, J. , Bajka, M. , Wapner, R. J. , Hall, T. J. , and House, M. , 2015, “ The Mechanical Role of the Cervix in Pregnancy,” J. Biomech., 48(9), pp. 1511–1523. [CrossRef] [PubMed]
Aspden, R. M. , 1988, “ Collagen Organisation in the Cervix and Its Relation to Mechanical Function,” Collagen Relat. Res., 8(2), pp. 103–112. [CrossRef]
House, M. , Feltovich, H. , Hall, T. J. , Stack, T. , Patel, A. , and Socrate, S. , 2012, “ Three-Dimensional, Extended Field-of-View Ultrasound Method for Estimating Large Strain Mechanical Properties of the Cervix During Pregnancy,” Ultrason. Imag., 34(1), pp. 1–14. [CrossRef]
Peralta, L. , Mourier, E. , Richard, C. , Charpigny, G. , Larcher, T. , Ait-Belkacem, D. , Balla, N. K. , Brasselet, S. , Tanter, M. , Muller, M. , and Chavatte-Palmer, P. , 2015, “ In Vivo Evaluation of Cervical Stiffness Evolution During Induced Ripening Using Shear Wave Elastography, Histology and 2 Photon Excitation Microscopy: Insight From an Animal Model,” PLoS One, 10(8), p. e0133377. [CrossRef] [PubMed]
Hassan, S. S. , Romero, R. , Haddad, R. , Hendler, I. , Khalek, N. , Tromp, G. , Diamond, M. P. , Sorokin, Y. , and Malone, J., Jr. , 2006, “ The Transcriptome of the Uterine Cervix Before and After Spontaneous Term Parturition,” Am. J. Obstet. Gynecol., 195(3), pp. 778–786. [CrossRef] [PubMed]
Hassan, S. S. , Romero, R. , Tarca, A. L. , Draghici, S. , Pineles, B. , Bugrim, A. , Khalek, N. , Camacho, N. , Mittal, P. , Yoon, B. H. , Espinoza, J. , Kim, C. J. , Sorokin, Y. , and Malone, J., Jr. , 2007, “ Signature Pathways Identified From Gene Expression Profiles in the Human Uterine Cervix Before and After Spontaneous Term Parturition,” Am. J. Obstet. Gynecol., 197(3), pp. 250.e1–250.e7. [CrossRef]
Hassan, S. S. , Romero, R. , Tarca, A. L. , Nhan-Chang, C. L. , Vaisbuch, E. , Erez, O. , Mittal, P. , Kusanovic, J. P. , Mazaki-Tovi, S. , Yeo, L. , Draghici, S. , Kim, J. S. , Uldbjerg, N. , and Kim, C. J. , 2009, “ The Transcriptome of Cervical Ripening in Human Pregnancy Before the Onset of Labor at Term: Identification of Novel Molecular Functions Involved in This Process,” J. Matern. Fetal Neonatal Med., 22(12), pp. 1183–1193. [CrossRef] [PubMed]
Elovitz, M. A. , Brown, A. G. , Anton, L. , Gilstrop, M. , Heiser, L. , and Bastek, J. , 2014, “ Distinct Cervical MicroRNA Profiles are Present in Women Destined to Have a Preterm Birth,” Am. J. Obstet. Gynecol., 210(3), pp. 221.e1–221.e11. [CrossRef]
Eidem, H. R. , Ackerman, W. E. , McGary, K. L. , Abbot, P. , and Rokas, A. , 2015, “ Gestational Tissue Transcriptomics in Term and Preterm Human Pregnancies: A Systematic Review and Meta-Analysis,” BMC Med. Genomics, 8(1), p. 27. [CrossRef] [PubMed]
Elovitz, M. A. , and Mrinalini, C. , 2004, “ Animal Models of Preterm Birth,” Trends Endocrinol. Metab., 15(10), pp. 479–487. [CrossRef] [PubMed]
House, M. , Kaplan, D. L. , and Socrate, S. , 2009, “ Relationships Between Mechanical Properties and Extracellular Matrix Constituents of the Cervical Stroma During Pregnancy,” Semin. Perinatol., 33(5), pp. 300–307. [CrossRef] [PubMed]
Holt, R. , Timmons, B. C. , Akgul, Y. , Akins, M. L. , and Mahendroo, M. , 2011, “ The Molecular Mechanisms of Cervical Ripening Differ Between Term and Preterm Birth,” Endocrinology, 152(3), pp. 1036–1046. [CrossRef] [PubMed]
Read, C. P. , Word, R. A. , Ruscheinsky, M. A. , Timmons, B. C. , and Mahendroo, M. S. , 2007, “ Cervical Remodeling During Pregnancy and Parturition: Molecular Characterization of the Softening Phase in Mice,” Reproduction, 134(2), pp. 327–340. [CrossRef] [PubMed]
Mahendroo, M. , 2012, “ Cervical Remodeling in Term and Preterm Birth: Insights From an Animal Model,” Reproduction, 143(4), pp. 429–438. [CrossRef] [PubMed]
Timmons, B. , Akins, M. , and Mahendroo, M. , 2010, “ Cervical Remodeling During Pregnancy and Parturition,” Trends Endocrinol. Metab., 21(6), pp. 353–361. [CrossRef] [PubMed]
Iams, J. D. , Goldenberg, R. L. , Meis, P. J. , Mercer, B. M. , Moawad, A. , Das, A. , Thom, E. , McNellis, D. , Copper, R. L. , Johnson, F. , and Roberts, J. M. , 1996, “ The Length of the Cervix and the Risk of Spontaneous Premature Delivery,” N. Engl. J. Med., 334(9), pp. 567–572. [CrossRef] [PubMed]
Fonseca, E. B. , Celik, E. , Parra, M. , Singh, M. , and Nicolaides, K. H. , 2007, “ Progesterone and the Risk of Preterm Birth Among Women With a Short Cervix,” N. Engl. J. Med., 357(5), pp. 462–469. [CrossRef] [PubMed]
Leppert, P. C. , and Yu, S. Y. , 1994, “ Apoptosis in the Cervix of Pregnant Rats in Association With Cervical Softening,” Gynecol. Obstet. Invest., 37(3), pp. 150–154. [CrossRef] [PubMed]
Andarawis-Puri, N. , Flatow, E. L. , and Soslowsky, L. J. , 2015, “ Tendon Basic Science: Development, Repair, Regeneration, and Healing,” J. Orthop. Res., 33(6), pp. 780–784. [CrossRef] [PubMed]
Screen, H. R. , Berk, D. E. , Kadler, K. E. , Ramirez, F. , and Young, M. F. , 2015, “ Tendon Functional Extracellular Matrix,” J. Orthop. Res., 33(6), pp. 793–799. [CrossRef] [PubMed]
Cooper, M. E. , 2004, “ Importance of Advanced Glycation End Products in Diabetes-Associated Cardiovascular and Renal Disease,” Am. J. Hypertens, 17(12 Pt. 2), pp. 31S–38S. [CrossRef] [PubMed]
Brownlee, M. , Cerami, A. , and Vlassara, H. , 1988, “ Advanced Glycosylation End Products in Tissue and the Biochemical Basis of Diabetic Complications,” N. Engl. J. Med., 318(20), pp. 1315–1321. [CrossRef] [PubMed]
Yoshida, K. , Jiang, H. , Kim, M. , Vink, J. , Cremers, S. , Paik, D. , Wapner, R. , Mahendroo, M. , and Myers, K. , 2014, “ Quantitative Evaluation of Collagen Crosslinks and Corresponding Tensile Mechanical Properties in Mouse Cervical Tissue During Normal Pregnancy,” PLoS One, 9(11), p. e112391. [CrossRef] [PubMed]
Yu, S. Y. , Tozzi, C. A. , Babiarz, J. , and Leppert, P. C. , 1995, “ Collagen Changes in Rat Cervix in Pregnancy—Polarized Light Microscopic and Electron Microscopic Studies,” Proc. Soc. Exp. Biol. Med., 209(4), pp. 360–368. [CrossRef] [PubMed]
Zhang, Y. , Akins, M. L. , Murari, K. , Xi, J. , Li, M. J. , Luby-Phelps, K. , Mahendroo, M. , and Li, X. , 2012, “ A Compact Fiber-Optic SHG Scanning Endomicroscope and Its Application to Visualize Cervical Remodeling During Pregnancy,” Proc. Natl. Acad. Sci. U.S.A., 109(32), pp. 12878–12883. [CrossRef] [PubMed]
Akins, M. L. , Luby-Phelps, K. , Bank, R. A. , and Mahendroo, M. , 2011, “ Cervical Softening During Pregnancy: Regulated Changes in Collagen Cross-Linking and Composition of Matricellular Proteins in the Mouse,” Biol. Reprod., 84(5), pp. 1053–1062. [CrossRef] [PubMed]
Myers, K. M. , Socrate, S. , Paskaleva, A. , and House, M. , 2010, “ A Study of the Anisotropy and Tension/Compression Behavior of Human Cervical Tissue,” ASME J. Biomech. Eng., 132(2), p. 021003. [CrossRef]
Timmons, B. C. , Reese, J. , Socrate, S. , Ehinger, N. , Paria, B. C. , Milne, G. L. , Akins, M. L. , Auchus, R. J. , McIntire, D. , House, M. , and Mahendroo, M. , 2014, “ Prostaglandins are Essential for Cervical Ripening in LPS-Mediated Preterm Birth But Not Term or Antiprogestin-Driven Preterm Ripening,” Endocrinology, 155(1), pp. 287–298. [CrossRef] [PubMed]
Harkness, M. L. R. , and Harkness, R. D. , 1959, “ Changes in the Physical Properties of the Uterine Cervix of the Rat During Pregnancy,” J. Physiol., 148(3), pp. 524–547. [CrossRef] [PubMed]
Yoshida, K. , Mahendroo, M. , Vink, J. , Wapner, R. , and Myers, K. , 2016, “ Material Properties of Mouse Cervical Tissue in Normal Gestation,” Acta Biomater., 36, pp. 195–209. [CrossRef] [PubMed]
Favata, M. , 2006, “ Scarless Healing in the Fetus: Implications and Strategies for Postnatal Tendon Repair,” Ph.D. Dissertation, University of Pennsylvania, Philadelphia, PA.
Dunkman, A. A. , Buckley, M. R. , Mienaltowski, M. J. , Adams, S. M. , Thomas, S. J. , Satchell, L. , Kumar, A. , Pathmanathan, L. , Beason, D. P. , Iozzo, R. V. , Birk, D. E. , and Soslowsky, L. J. , 2013, “ Decorin Expression is Important for Age-Related Changes in Tendon Structure and Mechanical Properties,” Matrix Biol., 32(1), pp. 3–13. [CrossRef] [PubMed]
Miller, K. S. , Edelstein, L. , Connizzo, B. K. , and Soslowsky, L. J. , 2012, “ Effect of Preconditioning and Stress Relaxation on Local Collagen Fiber Re-Alignment: Inhomogeneous Properties of Rat Supraspinatus Tendon,” ASME J. Biomech. Eng., 134(3), p. 031007. [CrossRef]
Freedman, B. R. , Sarver, J. J. , Buckley, M. R. , Voleti, P. B. , and Soslowsky, L. J. , 2014, “ Biomechanical and Structural Response of Healing Achilles Tendon to Fatigue Loading Following Acute Injury,” J. Biomech., 47(9), pp. 2028–2034. [CrossRef] [PubMed]
Drzewiecki, G. , Tozzi, C. , Yu, S. Y. , and Leppert, P. C. , 2005, “ A Dual Mechanism of Biomechanical Change in Rat Cervix in Gestation and Postpartum: Applied Vascular Mechanics,” Cardiovasc. Eng., 5(4), pp. 187–193. [CrossRef]
Anderson, J. , Brown, N. , Mahendroo, M. S. , and Reese, J. , 2006, “ Utilization of Different Aquaporin Water Channels in the Mouse Cervix During Pregnancy and Parturition and in Models of Preterm and Delayed Cervical Ripening,” Endocrinology, 147(1), pp. 130–140. [CrossRef] [PubMed]
Xu, X. , Akgul, Y. , Mahendroo, M. , and Jerschow, A. , 2010, “ Ex Vivo Assessment of Mouse Cervical Remodeling Through Pregnancy Via 23Na MRS,” NMR Biomed., 23(8), pp. 907–912. [CrossRef] [PubMed]
Ruscheinsky, M. , De la Motte, C. , and Mahendroo, M. , 2008, “ Hyaluronan and Its Binding Proteins During Cervical Ripening and Parturition: Dynamic Changes in Size, Distribution and Temporal Sequence,” Matrix Biol., 27(5), pp. 487–497. [CrossRef] [PubMed]
Timmons, B. C. , Mitchell, S. M. , Gilpin, C. , and Mahendroo, M. S. , 2007, “ Dynamic Changes in the Cervical Epithelial Tight Junction Complex and Differentiation Occur During Cervical Ripening and Parturition,” Endocrinology, 148(3), pp. 1278–1287. [CrossRef] [PubMed]
Connizzo, B. K. , Bhatt, P. R. , Liechty, K. W. , and Soslowsky, L. J. , 2014, “ Diabetes Alters Mechanical Properties and Collagen Fiber Re-Alignment in Multiple Mouse Tendons,” Ann. Biomed. Eng., 42(9), pp. 1880–1888. [CrossRef] [PubMed]
Connizzo, B. K. , Sarver, J. J. , Birk, D. E. , Soslowsky, L. J. , and Iozzo, R. V. , 2013, “ Effect of Age and Proteoglycan Deficiency on Collagen Fiber Re-Alignment and Mechanical Properties in Mouse Supraspinatus Tendon,” ASME J. Biomech. Eng., 135(2), p. 021019. [CrossRef]
Bauer, M. , Mazza, E. , Jabareen, M. , Sultan, L. , Bajka, M. , Lang, U. , Zimmermann, R. , and Holzapfel, G. A. , 2009, “ Assessment of the In Vivo Biomechanical Properties of the Human Uterine Cervix in Pregnancy Using the Aspiration Test: A Feasibility Study,” Eur. J. Obstet. Gynecol. Reprod. Biol., 144(Suppl. 1), pp. S77–S81. [CrossRef] [PubMed]
Hernandez-Andrade, E. , Hassan, S. S. , Ahn, H. , Korzeniewski, S. J. , Yeo, L. , Chaiworapongsa, T. , and Romero, R. , 2013, “ Evaluation of Cervical Stiffness During Pregnancy Using Semiquantitative Ultrasound Elastography,” Ultrasound Obstet. Gynecol., 41(2), pp. 152–161. [CrossRef] [PubMed]
Yamaguchi, S. , Kamei, Y. , Kozuma, S. , and Taketani, Y. , 2007, “ Tissue Elastography Imaging of the Uterine Cervix During Pregnancy,” J. Med. Ultrason., 34(4), pp. 209–210. [CrossRef]


Grahic Jump Location
Fig. 1

Cervical mechanical testing dissection. (a) Schematic of cervix anatomy. (b) NP and (c) E18.5 cervices before and (b′) and (c′) after dissection. During dissection the cervix was cut open on the side opposite to the bladder and then the bladder was removed. The cervix was then laid flat to expose the lumen, and then rotated. The ends were affixed between two pieces of sandpaper for gripping so that when the cervix was pulled in tension, this represented circumferential loading.

Grahic Jump Location
Fig. 2

(a) Custom testing setup to record collagen fiber re-alignment during the mechanical testing. (b) Close-up of the cervical tissue in grips during mechanical testing. (c) Schematic depicting typical force-displacement and stress-strain curves from a uniaxial test. Stiffness and maximum load were obtained from the force-displacement curve and Young's modulus and maximum stress were obtained from the stress-strain curve. Collagen fiber re-alignment was assessed at the beginning and end of the toe region, 45% of maximum load and 90% of maximum load. (d) Representative load-stretch plots for each gestational time point.

Grahic Jump Location
Fig. 5

Collagen fiber re-alignment through polarized light analysis of the cervix during mechanical testing. Representative plots of polarized light analyzed at toe, end of toe, 45% of maximum load, and 90% of maximum load. (a) NP, (b) E10.5, (c) E12.5, (d) E14.5, (e) E16.5, and (f) E18.5. Lines represent significance (p < 0.05) while dashed lines represent tends (p < 0.1).

Grahic Jump Location
Fig. 4

Cervix structural and material mechanical properties. (a) Stiffness, (b) Max Load, (c) Max Stress, and (d) Modulus for all samples. The white bar on the left represent the NP samples and during gestation different time points are shown in different shades of gray. PP samples are represented on the far right with a checkered pattern. All of the data is presented as means with standard deviations, and significance is noted at p < 0.05 with lines.

Grahic Jump Location
Fig. 3

Cross-sectional area of the cervix during gestation. (a) Cross-sectional area is shown for all gestational time points. The white bar on the left represents the NP and during gestation different time points are shown in increasing shades of grey. PP samples are represented on the far right with a checkered pattern. All of the data is presented as means with standard deviations, and significance noted at p < 0.05 with a line. Although no statistical differences were observed between the (b) NP and the (c) E18.5 samples, qualitative visual differences were observed.



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In