Research Papers

A Novel Anterior Transpedicular Screw Artificial Vertebral Body System for Lower Cervical Spine Fixation: A Finite Element Study

[+] Author and Article Information
Weidong Wu

Department of Anatomy,
Guangdong Provincial Medical Biomechanical Key Laboratory,
Academy of Orthopedics of Guangdong Province,
Southern Medical University,
Guangzhou 510515, China;
Wuhan Concrete Technology Company Limited,
Gaoxin Avenue 818,
Wuhan 430200, Hubei, China
e-mail: wu315129181@163.com

Chun Chen

Department of Orthopedics,
The First Affiliated Hospital of Wenzhou Medical University,
Wenzhou 325000, Zhejiang, China
e-mail: chenchunkk@163.com

Jinpei Ning

Department of Orthopedics,
Wuzhou Red Cross Hospital,
Wuzhou 543002, Guangxi, China
e-mail: njp008@sina.com

Peidong Sun

Department of Anatomy,
Guangdong Provincial Medical Biomechanical Key Laboratory,
Academy of Orthopedics of Guangdong Province,
Southern Medical University,
Guangzhou 510515, China
e-mail: spdwwf@126.com

Jinyuan Zhang

Department of Anatomy,
Guangdong Provincial Medical Biomechanical Key Laboratory,
Academy of Orthopedics of Guangdong Province,
Southern Medical University,
Guangzhou 510515, China
e-mail: 553545578@qq.com

Changfu Wu

Department of Orthopedic Surgery,
The Affiliated Hospital of Putian University,
Putian 351100, Fujian, China;
Department of Orthopedic Surgery,
The Affiliated Putian Hospital of Southern Medical University,
Putian 351100, Fujian, China
e-mail: wuchangfu360@163.com

Zhenyu Bi

Department of Anatomy,
Guangdong Provincial Medical Biomechanical Key Laboratory,
Academy of Orthopedics of Guangdong Province,
Southern Medical University,
Guangzhou 510515, China
e-mail: lybimail@126.com

Jihong Fan

Department of Anatomy,
Guangdong Provincial Medical Biomechanical Key Laboratory,
Academy of Orthopedics of Guangdong Province,
Southern Medical University,
Guangzhou 510515, China
e-mail: 793649633@qq.com

Xianliang Lai

Department of Orthopedic Surgery,
Wenzhou Hospitals of Traditional Chinese and Western Medicine,
Wenzhou 325000, Zhejiang, China
e-mail: 303476292@qq.com

Jun Ouyang

Department of Anatomy,
Guangdong Provincial Medical Biomechanical Key Laboratory,
Academy of Orthopedics of Guangdong Province,
Southern Medical University,
No. 1023 Shatai Road,
Baiyun District,
Guangzhou 510515, China
e-mail: jouyang@126.com

1W. Wu and C. Chen contributed equally to this work.

2Corresponding author.

Manuscript received December 1, 2016; final manuscript received March 19, 2017; published online April 18, 2017. Assoc. Editor: Brian D. Stemper.

J Biomech Eng 139(6), 061003 (Apr 18, 2017) (8 pages) Paper No: BIO-16-1489; doi: 10.1115/1.4036393 History: Received December 01, 2016; Revised March 19, 2017

A finite element model was used to compare the biomechanical properties of a novel anterior transpedicular screw artificial vertebral body system (AVBS) with a conventional anterior screw plate system (ASPS) for fixation in the lower cervical spine. A model of the intact cervical spine (C3–C7) was established. AVBS or ASPS constructs were implanted between C4 and C6. The models were loaded in three-dimensional (3D) motion. The Von Mises stress distribution in the internal fixators was evaluated, as well as the range of motion (ROM) and facet joint force. The models were generated and analyzed by mimics, geomagic studio, and ansys software. The intact model of the lower cervical spine consisted of 286,382 elements. The model was validated against previously reported cadaveric experimental data. In the ASPS model, stress was concentrated at the connection between the screw and plate and the connection between the titanium mesh and adjacent vertebral body. In the AVBS model, stress was evenly distributed. Compared to the intact cervical spine model, the ROM of the whole specimen after fixation with both constructs is decreased by approximately 3 deg. ROM of adjacent segments is increased by approximately 5 deg. Facet joint force of the ASPS and AVBS models was higher than those of the intact cervical spine model, especially in extension and lateral bending. AVBS fixation represents a novel reconstruction approach for the lower cervical spine. AVBS provides better stability and lower risk for internal fixator failure compared with traditional ASPS fixation.

Copyright © 2017 by ASME
Your Session has timed out. Please sign back in to continue.


Boockvar, J. A. , Philips, M. F. , Telfeian, A. E. , O'Rourke, D. M. , and Marcotte, P. J. , 2001, “ Results and Risk Factors for Anterior Cervicothoracic Junction Surgery,” J. Neurosurg., 94(1), pp. 12–17. [PubMed]
Di Angelo, D. J. , Foley, K. T. , Morrow, B. R. , Schwab, J. S. , Song, J. , German, J. W. , and Blair, E., 2001, “ In Vitro Biomechanics of Cervical Disc Arthroplasty With the ProDisc-C Total Disc Implant,” Neurosurg. Focus, 17(3), p. E7.
Nabhan, A. , Ahlhelm, F. , Pitzen, T. , Steudel, W. I. , Jung, J. , Shariat, K. , Steimer, O., Bachelier, F., and Pape, D., 2007, “ Disc Replacement Using Pro-Disc C Versus Fusion: A Prospective Randomised and Controlled Radiographic and Clinical Study,” Eur. Spine J., 16(3), pp. 423–430. [CrossRef] [PubMed]
Porchet, F. , and Metcalf, N. H. , 2004, “ Clinical Outcomes With the Prestige II Cervical Disc: Preliminary Results From a Prospective Randomized Clinical Trial,” Neurosurg. Focus, 17(3), p. E6. [CrossRef] [PubMed]
Henriques, T. , Olerud, C. , Bergman, A. , and Jonsson, H. J. , 2004, “ Distractive Flexion Injuries of the Subaxial Cervical Spine Treated With Anterior Plate Alone,” J. Spinal Disord. Tech., 17(1), pp. 1–7. [CrossRef] [PubMed]
Epstein, N. E. , 2001, “ Reoperation Rates for Acute Graft Extrusion and Pseudarthrosis After One-Level Anterior Corpectomy and Fusion With and Without Plate Instrumentation: Etiology and Corrective Management,” Surg. Neurol., 56(2), pp. 73–81. [CrossRef] [PubMed]
Bozkus, H. , Ames, C. P. , Chamberlain, R. H. , Nottmeier, E. W. , Sonntag, V. K. , Papadopoulos, S. M. , and Crawford, N. R., 2005, “ Biomechanical Analysis of Rigid Stabilization Techniques for Three-Column Injury in the Lower Cervical Spine,” Spine (Philadelphia Pa 1976), 30(8), pp. 915–922. [CrossRef]
Daubs, M. D. , 2005, “ Early Failures Following Cervical Corpectomy Reconstruction With Titanium Mesh Cages and Anterior Plating,” Spine (Philadelphia Pa 1976), 30(12), pp. 1402–1406. [CrossRef]
Sasso, R. C. , Ruggiero, R. J. , Reilly, T. M. , and Hall, P. V. , 2003, “ Early Reconstruction Failures After Multilevel Cervical Corpectomy,” Spine (Philadelphia Pa 1976), 28(2), pp. 140–142. [CrossRef]
Vaccaro, A. R. , Falatyn, S. P. , Scuderi, G. J. , Eismont, F. J. , McGuire, R. A. , Singh, K. , and Garfin, S. R., 1998, “ Early Failure of Long Segment Anterior Cervical Plate Fixation,” J. Spinal Disord., 11(5), pp. 410–415. [PubMed]
Masaki, Y. , Yamazaki, M. , Okawa, A. , Aramomi, M. , Hashimoto, M. , Koda, M. , Mochizuki, M., and Moriya, H., 2007, “ An Analysis of Factors Causing Poor Surgical Outcome in Patients With Cervical Myelopathy Due to Ossification of the Posterior Longitudinal Ligament: Anterior Decompression With Spinal Fusion Versus Laminoplasty,” J. Spinal Disord. Tech., 20(1), pp. 7–13. [CrossRef] [PubMed]
Schmidt, R. , Wilke, H. J. , Claes, L. , Puhl, W. , and Richter, M. , 2003, “ Pedicle Screws Enhance Primary Stability in Multilevel Cervical Corpectomies: Biomechanical in vitro Comparison of Different Implants Including Constrained and Nonconstrained Posterior Instrumentations,” Spine (Philadelphia Pa 1976), 28(16), pp. 1821–1828. [CrossRef]
Ashkenazi, E. , Smorgick, Y. , Rand, N. , Millgram, M. A. , Mirovsky, Y. , and Floman, Y. , 2005, “ Anterior Decompression Combined With Corpectomies and Discectomies in the Management of Multilevel Cervical Myelopathy: A Hybrid Decompression and Fixation Technique,” J. Neurosurg. Spine, 3(3), pp. 205–209. [CrossRef] [PubMed]
Brazenor, G. A. , 2007, “ Comparison of Multisegment Anterior Cervical Fixation Using Bone Strut Graft Versus a Titanium Rod and Buttress Prosthesis: Analysis of Outcome With Long-Term Follow-Up and Interview by Independent Physician,” Spine (Philadelphia Pa 1976), 32(1), pp. 63–71. [CrossRef]
Koller, H. , Hempfing, A. , Acosta, F. , Fox, M. , Scheiter, A. , Tauber, M. , Holz, U., Resch, H., and Hitzl, W., 2008, “ Cervical Anterior Transpedicular Screw Fixation—Part I: Study on Morphological Feasibility, Indications, and Technical Prerequisites,” Eur. Spine J., 17(4), pp. 523–528. [CrossRef] [PubMed]
Chen, C. , Ruan, D. , Wu, C. , Wu, W. , Sun, P. , Zhang, Y. , Wu, J., Lu, S., and Ouyang, J., 2013, “ CT Morphometric Analysis to Determine the Anatomical Basis for the Use of Transpedicular Screws During Reconstruction and Fixations of Anterior Cervical Vertebrae,” PLoS One, 8(12), p. e81159. [CrossRef] [PubMed]
Fu, M. , Lin, L. , Kong, X. , Zhao, W. , Tang, L. , Li, J. , and Ouyang, J., 2013, “ Construction and Accuracy Assessment of Patient-Specific Biocompatible Drill Template for Cervical Anterior Transpedicular Screw (ATPS) Insertion: An In Vitro Study,” PLoS One, 8(1), p. e53580. [CrossRef] [PubMed]
Zhao, L. J. , Xu, R. M. , Jiang, W. Y. , Ma, W. H. , Xu, N. J. , and Hu, Y. , 2011, “ A New Technique for Anterior Cervical Pedicle Screw Implantation,” Orthop. Surg., 3(3), pp. 193–198. [CrossRef] [PubMed]
Yukawa, Y. , Kato, F. , Ito, K. , Nakashima, H. , and Machino, M. , 2009, “ Anterior Cervical Pedicle Screw and Plate Fixation Using Fluoroscope-Assisted Pedicle Axis View Imaging: A Preliminary Report of a New Cervical Reconstruction Technique,” Eur. Spine J., 18(6), pp. 911–916. [CrossRef] [PubMed]
Lau, D. , Song, Y. , Guan, Z. , La Marca, F. , and Park, P. , 2013, “ Radiological Outcomes of Static vs Expandable Titanium Cages After Corpectomy: A Retrospective Cohort Analysis of Subsidence,” Neurosurgery, 72(4), pp. 529–539. [CrossRef] [PubMed]
Fice, J. B. , Cronin, D. S. , and Panzer, M. B. , 2011, “ Cervical Spine Model to Predict Capsular Ligament Response in Rear Impact,” Ann. Biomed. Eng., 39(8), pp. 2152–2162. [CrossRef] [PubMed]
Fan, C. Y. , Hsu, C. C. , Chao, C. K. , Lin, S. C. , and Chao, K. H. , 2010, “ Biomechanical Comparisons of Different Posterior Instrumentation Constructs After Two-Level ALIF: A Finite Element Study,” Med. Eng. Phys., 32(2), pp. 203–211. [CrossRef] [PubMed]
Hussain, M. , Nassr, A. , Natarajan, R. N. , An, H. S. , and Andersson, G. B. , 2012, “ Corpectomy Versus Discectomy for the Treatment of Multilevel Cervical Spine Pathology: A Finite Element Model Analysis,” Spine J., 12(5), pp. 401–408. [CrossRef] [PubMed]
Mercer, S. , and Bogduk, N. , 1999, “ The Ligaments and Annulus Fibrosus of Human Adult Cervical Intervertebral Discs,” Spine (Philadelphia Pa 1976), 24(7), pp. 619–628. [CrossRef]
Lee, S. H. , Im, Y. J. , Kim, K. T. , Kim, Y. H. , Park, W. M. , and Kim, K. , 2011, “ Comparison of Cervical Spine Biomechanics After Fixed- and Mobile-Core Artificial Disc Replacement: A Finite Element Analysis,” Spine (Philadelphia Pa 1976), 36(9), pp. 700–708. [CrossRef]
Hussain, M. , Natarajan, R. N. , Fayyazi, A. H. , Braaksma, B. R. , Andersson, G. B. , and An, H. S. , 2009, “ Screw Angulation Affects Bone-Screw Stresses and Bone Graft Load Sharing in Anterior Cervical Corpectomy Fusion With a Rigid Screw-Plate Construct: A Finite Element Model Study,” Spine J., 9(12), pp. 1016–1023. [CrossRef] [PubMed]
Tchako, A. , and Sadegh, A. M. , 2009, “ Stress Changes in Intervertebral Discs of the Cervical Spine Due to Partial Discectomies and Fusion,” ASME J. Biomech. Eng., 131(5), p. 51013. [CrossRef]
Panjabi, M. M. , Crisco, J. J. , Vasavada, A. , Oda, T. , Cholewicki, J. , Nibu, K. , and Shin, E., 2001, “ Mechanical Properties of the Human Cervical Spine as Shown by Three-Dimensional Load-Displacement Curves,” Spine (Philadelphia Pa 1976), 26(24), pp. 2692–2700. [CrossRef]
Kallemeyn, N. , Gandhi, A. , Kode, S. , Shivanna, K. , Smucker, J. , and Grosland, N. , 2010, “ Validation of a C2–C7 Cervical Spine Finite Element Model Using Specimen-Specific Flexibility Data,” Med. Eng. Phys., 32(5), pp. 482–489. [CrossRef] [PubMed]
Holmes, A. , Wang, C. , Han, Z. H. , and Dang, G. T. , 1994, “ The Range and Nature of Flexion-Extension Motion in the Cervical Spine,” Spine, 19(22), pp. 2505–2510. [CrossRef] [PubMed]
Panjabi, M. M. , 1992, “ The Stabilizing System of the Spine—Part II: Neutral Zone and Instability Hypothesis,” J. Spinal Disord. Tech., 5(4), pp. 390–397. [CrossRef]
Moroney, S. P. , Schultz, A. B. , Miller, J. A. , and Andersson, G. B. , 1988, “ Load-Displacement Properties of Lower Cervical Spine Motion Segments,” J. Biomech., 21(9), pp. 769–779. [CrossRef] [PubMed]
Panjabi, M. M. , Summers, D. J. , Pelker, R. R. , Videman, T. , Friedlaender, G. E. , and Southwick, W. O. , 1986, “ Three-Dimensional Load-Displacement Curves Due to Forces on the Cervical Spine,” J. Orthop. Res., 4(2), pp. 152–161. [CrossRef] [PubMed]
Penning, L. , 1978, “ Normal Movements of the Cervical Spine,” Am. J. Roentgenol., 130(2), pp. 317–326. [CrossRef]
Nightingale, R. W. , Winkelstein, B. A. , Knaub, K. E. , Richardson, W. J. , Luck, J. F. , and Myers, B. S. , 2002, “ Comparative Strengths and Structural Properties of the Upper and Lower Cervical Spine in Flexion and Extension,” J. Biomech., 35(6), pp. 725–732. [CrossRef] [PubMed]
Burkhart, T. A. , Andrews, D. M. , and Dunning, C. E. , 2013, “ Finite Element Modeling Mesh Quality, Energy Balance, and Validation Methods: A Review With Recommendations Associated With the Modeling of Bone Tissue,” J. Biomech., 46(9), pp. 1477–1488. [CrossRef] [PubMed]
Koller, H. , Hitzl, W. , Acosta, F. , Tauber, M. , Zenner, J. , Resch, H. , Yukawa, Y., Meier, O., Schmidt, R., and Mayer, M., 2009, “ In Vitro Study of Accuracy of Cervical Pedicle Screw Insertion Using an Electronic Conductivity Device (ATPS Part III),” Eur. Spine J., 18(9), p. 130013.
Koller, H. , Acosta, F. , Tauber, M. , Fox, M. , Martin, H. , Forstner, R. , Augat, P., Penzkofer, R., Pirich, C., Kässmann, H., Resch, H., and Hitzl, W., 2008, “ Cervical Anterior Transpedicular Screw Fixation (ATPS)—Part II: Accuracy of Manual Insertion and Pull-Out Strength of ATPS,” Eur. Spine J., 17(4), pp. 539–555. [CrossRef] [PubMed]
Panjabi, M. M. , Isomi, T. , and Wang, J. L. , 1999, “ Loosening at the Screw-Vertebra Junction in Multilevel Anterior Cervical Plate Constructs,” Spine (Philadelphia Pa 1976), 24(22), pp. 2383–2388. [CrossRef]
Koller, H. , Hempfing, A. , Ferraris, L. , Maier, O. , Hitzl, W. , and Metz-Stavenhagen, P. , 2007, “ 4- and 5-Level Anterior Fusions of the Cervical Spine: Review of Literature and Clinical Results,” Eur. Spine J., 16(12), pp. 2055–2071. [CrossRef] [PubMed]
Pitzen, T. R. , Chrobok, J. , Stulik, J. , Ruffing, S. , Drumm, J. , Sova, L. , Kucera, R., Vyskocil, T., and Steudel, W. I., 2009, “ Implant Complications, Fusion, Loss of Lordosis, and Outcome After Anterior Cervical Plating With Dynamic or Rigid Plates: Two-Year Results of a Multi-Centric, Randomized, Controlled Study,” Spine (Philadelphia Pa 1976), 34(7), pp. 641–646. [CrossRef]
Kim, H. W. , Ryu, J. I. , and Bak, K. H. , 2011, “ The Safety and Efficacy of Cadaveric Allografts and Titanium Cage as a Fusion Substitutes in Pyogenic Osteomyelitis,” J. Korean Neurosurg. Soc., 50(4), pp. 348–356. [CrossRef] [PubMed]
White, A. A. , and Panjabi, M. M. , 1990, Clinical Biomechanics of the Spine, 2nd ed., JB Lippincott, Philadelphia, PA, p. 98.
Cavanaugh, J. M. , Ozaktay, A. C. , Yamashita, H. T. , and King, A. I. , 1996, “ Lumbar Facet Pain: Biomechanics, Neuroanatomy, and Neurophysiology,” J. Biomech., 29(9), pp. 1117–1129. [CrossRef] [PubMed]
Chang, U. K. , Kim, D. H. , Lee, M. C. , Willenberg, R. , Kim, S. H. , and Lim, J. , 2007, “ Changes in Adjacent-Level Disc Pressure and Facet Joint Force After Cervical Arthroplasty Compared With Cervical Discectomy and Fusion,” J. Neurosurg. Spine, 7(1), pp. 33–39. [CrossRef] [PubMed]
Ivancic, P. C. , Ito, S. , Tominaga, Y. , Rubin, W. , Coe, M. P. , Ndu, A. B. , Carlson, E. J., and Panjabi, M. M., 2008, “ Whiplash Causes Increased Laxity of Cervical Capsular Ligament,” Clin. Biomech. (Bristol, Avon), 23(2), pp. 159–165. [CrossRef] [PubMed]


Grahic Jump Location
Fig. 1

Construction of a geometrical model of the lower cervical spine and fixators: (a) model of the cervical spine reconstructed by mimics 14.0, (b) model of the lower cervical spine in geomagic v2013, (c) ASPS: anterior plate, (d) ASPS, titanium mesh, (e) artificial vertebral body, (f) vertebral body screw, (g) anterior transpedicular screw, (h) ligament connections, (i) sagittal view of a disk, (j) annulus matrix and fibers, and (k) cortical and cancellous bone

Grahic Jump Location
Fig. 2

Modeling and calibration of the lower cervical spine: (a) calibration of flexion–extension, (b) calibration of lateral bending, (c) calibration of axial rotation, (d) intact model, (e) ASPS model, and (f) AVBS model

Grahic Jump Location
Fig. 3

Stress contour map under conditions of axial loading and extension–flexion: (a) maximum stress of fixators in the ASPS and AVBS models, (b) stress distribution in the ASPS model under axial loading, (c) stress distribution in the AVBS model under axial loading, (d) stress distribution in the ASPS model under flexion, (e) stress distribution in the AVBS model under flexion, (f) stress distribution in the ASPS model under extension, and (g) stress distribution in the AVBS model under extension

Grahic Jump Location
Fig. 4

Facet joint force of the intact cervical spine, ASPS, and AVBS models. EX—extension; BD—lateral bending; RT—axial rotation.



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In