Research Papers

Influence of Implant Surface Texture Design on Peri-Acetabular Bone Ingrowth: A Mechanobiology Based Finite Element Analysis

[+] Author and Article Information
Kaushik Mukherjee

Department of Mechanical Engineering,
Indian Institute of Technology Kharagpur,
Kharagpur, West Bengal 721 302, India

Sanjay Gupta

Department of Mechanical Engineering,
Indian Institute of Technology Kharagpur,
Kharagpur, West Bengal 721 302, India
e-mail: sangupta@mech.iitkgp.ernet.in

1Corresponding author.

Manuscript received June 10, 2016; final manuscript received November 18, 2016; published online January 23, 2017. Assoc. Editor: Kristen Billiar.

J Biomech Eng 139(3), 031006 (Jan 23, 2017) (8 pages) Paper No: BIO-16-1246; doi: 10.1115/1.4035369 History: Received June 10, 2016; Revised November 18, 2016

The fixation of uncemented acetabular components largely depends on the amount of bone ingrowth, which is influenced by the design of the implant surface texture. The objective of this numerical study is to evaluate the effect of these implant texture design factors on bone ingrowth around an acetabular component. The novelty of this study lies in comparative finite element (FE) analysis of 3D microscale models of the implant-bone interface, considering patient-specific mechanical environment, host bone material property and implant-bone relative displacement, in combination with sequential mechanoregulatory algorithm and design of experiment (DOE) based statistical framework. Results indicated that the bone ingrowth process was inhibited due to an increase in interbead spacing from 200 μm to 600 μm and bead diameter from 1000 μm to 1500 μm and a reduction in bead height from 900 μm to 600 μm. Bead height, a main effect, was found to have a predominant influence on bone ingrowth. Among the interaction effects, the combination of bead height and bead diameter was found to have a pronounced influence on bone ingrowth process. A combination of low interbead spacing (P = 200 μm), low bead diameter (D = 1000 μm), and high bead height (H = 900 μm) facilitated peri-acetabular bone ingrowth and an increase in average Young's modulus of newly formed tissue layer. Hence, such a surface texture design seemed to provide improved fixation of the acetabular component.

Copyright © 2017 by ASME
Your Session has timed out. Please sign back in to continue.


HQIP, 2012, “ National Joint Registry for England and Wales, 9th Annual Report,” Healthcare Quality Improvement Partnership, Hemel, Hempstead, UK.
NZOA, 2012, “ The New Zealand Joint Registry: Thirteen Year Report January 1999 to December 2011,” New Zealand Orthopaedic Association, Wellington, New Zealand.
Davies, J. E. , 1996, “ In Vitro Modeling of the Bone/Implant Interface,” Anat. Rec., 245(2), pp. 426–445. [CrossRef] [PubMed]
Davies, J. E. , 2003, “ Understanding Peri-Implant Endosseous Healing,” J. Dent. Edu., 67(8), pp. 932–949. http://www.jdentaled.org/content/67/8/932.long
Kienapfel, H. , Sprey, C. , Wilke, A. , and Griss, P. , 1999, “ Implant Fixation by Bone Ingrowth,” J. Arthroplasty, 14(3), pp. 355–368. [CrossRef] [PubMed]
Bobyn, J. D. , Stackpool, G. J. , Hacking, S. A. , Tanzer, M. , and Krygier, J. J. , 1999, “ Characteristics of Bone Ingrowth and Interface Mechanics of a New Porous Tantalum Biomaterial,” J. Bone Joint Surg., 81B(5), pp. 907–914. http://www.bjj.boneandjoint.org.uk/content/81-B/5/907.long
Bobyn, J. D. , Toh, K. K. , Hacking, S. A. , Tanzer, M. , and Krygier, J. J. , 1999, “ Tissue Response to Porous Tantalum Acetabular Cups: A Canine Model,” J. Arthroplasty, 14(3), pp. 347–354. [CrossRef] [PubMed]
Burr, D. B. , Mori, S. , Boyd, R. D. , Sun, T. C. , Blaha, J. D. , Lane, L. , and Parr, J. , 1993, “ Histomorphometric Assessment of the Mechanisms for Rapid Ingrowth of Bone to HA/TCP-Coated Implants,” J. Biomed. Mater. Res., 27(5), pp. 645–653. [CrossRef] [PubMed]
Caja, V. L. , Moroni, A. , Egger, E. L. , Gottsauner-Wolf, F. , and Chao, E. Y. S. , 1994, “ The Effect of Bead Diameter on the Accuracy of Two Current Techniques Used to Quantify Bone Ingrowth in Porous-Coated Implants,” J. Mater. Sci. Mater. Med., 5(1), pp. 29–32. [CrossRef]
D'Lima, D. D. , Lemperle, S. M. , Chen, P. C. , Holmes, R. E. , and Colwell, C. W. , 1998, “ Bone Response to Implant Surface Morphology,” J. Arthroplasty, 13(8), pp. 928–934. [CrossRef] [PubMed]
Gottlander, M. , and Albrektsson, T. , 1992, “ Histomorphometric Analyzes of Hydroxyapatite-Coated and Uncoated Titanium Implants. The Importance of the Implant Design,” Clin. Oral Implants Res., 3(2), pp. 71–76. [CrossRef] [PubMed]
Moroni, A. , Caja, V. L. , Egger, E. L. , Trinchese, L. , and Chao, E. Y. S. , 1994, “ Histomorphometry of Hydroxyapatite Coated and Uncoated Porous Titanium Bone Implants,” Biomaterials, 15(11), pp. 926–930. [CrossRef] [PubMed]
Moroni, A. , Caja, V. L. , Sabato, C. , Egger, E. L. , Gottsauner-Wolf, F. , and Chao, E. Y. S. , 1994, “ Bone Ingrowth Analysis and Interface Evaluation of Hydroxyapatite Coated Versus Uncoated Titanium Porous Bone Implants,” J. Mater. Sci. Mater Med., 5(6–7), pp. 411–416. [CrossRef]
Frenkel, S. R. , Jaffe, W. L. , Dimaano, F. , Iesaka, K. , and Hua, T. , 2004, “ Bone Response to a Novel Highly Porous Surface in a Canine Implantable Chamber,” J. Biomed. Mater. Res., Part B, 71(2), pp. 387–391. [CrossRef]
Willie, B. M. , Yang, X. , Kelly, N. H. , Han, J. , Nair, T. , Wright, T. M. , van der Meulen, M. C. , and Bostrom, M. P. , 2010, “ Cancellous Bone Osseointegration Is Enhanced by In Vivo Loading,” Tissue Eng., Part C, 16(6), pp. 1399–1406. [CrossRef]
Bragdon, C. R. , Jasty, M. , Greene, M. , Rubash, H. E. , and Harris, W. H. , 2004, “ Biologic Fixation of Total Hip Implants,” J. Bone Joint Surg., 86A(Suppl 2), pp. 105–117. http://jbjs.org/content/86/suppl_2/105.long
Rungsiyakull, C. , Li, Q. , Sun, G. , Li, W. , and Swain, M. V. , 2010, “ Surface Morphology Optimization for Osseointegration of Coated Implants,” Biomaterials, 31(27), pp. 7196–7204. [CrossRef] [PubMed]
Chen, J. , Rungsiyakull, C. , Li, W. , Chen, Y. , Swain, M. , and Li, Q. , 2013, “ Multiscale Design of Surface Morphological Gradient for Osseointegration,” J. Mech. Behav. Biomed. Mater., 20, pp. 387–397. [CrossRef] [PubMed]
Chou, H. Y. , and Müftü, S. , 2013, “ Simulation of Peri-Implant Bone Healing Due to Immediate Loading in Dental Implant Treatments,” J. Biomech., 46(5), pp. 871–878. [CrossRef] [PubMed]
Mukherjee, K. , and Gupta, S. , 2016, “ Bone Ingrowth Around Porous Coated Acetabular Implant: A Three-Dimensional Finite Element Study Using Mechanoregulatory Algorithm,” Biomech. Model Mechanobiol., 15(2), pp. 389–403. [CrossRef] [PubMed]
Mukherjee, K. , and Gupta, S. , 2016, “ Mechanobiological Simulations of Peri-Acetabular Bone Ingrowth: A Comparative Analysis of Cell-Phenotype Specific and Phenomenological Algorithms,” Med. Biol. Eng. Comput., (in press).
Ghosh, R. , Mukherjee, K. , and Gupta, S. , 2013, “ Bone Remodeling Around Uncemented Metallic and Ceramic Acetabular Components,” Proc. Inst. Mech. Eng., Part H, 227(5), pp. 490–502. [CrossRef]
Ghosh, R. , and Gupta, S. , 2014, “ Bone Remodeling Around Cementless Composite Acetabular Components: The Effects of Implant Geometry and Implant–Bone Interfacial Conditions,” J. Mech. Behav. Biomed. Mater., 32, pp. 257–269. [CrossRef] [PubMed]
Mukherjee, K. , and Gupta, S. , 2016, “ The Effects of Musculoskeletal Loading Regimes on Numerical Evaluations of Acetabular Component,” Proc. Inst. Mech. Eng., Part H, 230(10), pp. 918–929. [CrossRef]
Taddei, F. , Pancanti, A. , and Viceconti, M. , 2004, “ An Improved Method for the Automatic Mapping of Computed Tomography Numbers Onto Finite Element Models,” Med. Eng. Phys., 26(1), pp. 61–69. [CrossRef] [PubMed]
Dalstra, M. , and Huiskes, R. , 1995, “ Load Transfer Across the Pelvis Bone,” J. Biomech., 28(6), pp. 715–724. [CrossRef] [PubMed]
Anderson, A. E. , Peters, C. L. , Tuttle, B. D. , and Weiss, J. A. , 2005, “ Subject-Specific Finite Element Model of the Pelvis: Development, Validation, Sensitive Studies,” ASME J. Biomech. Eng., 127(3), pp. 364–373. [CrossRef]
Zhang, Q. H. , Wang, J. Y. , Lupton, C. , Lupton, C. , Heaton-Adegbile, P. , Guo, Z. X. , Liu, Q. , and Tong, J. , 2010, “ A Subject-Specific Pelvic Bone Model and Its Application to Cemented Acetabular Replacements,” J. Biomech., 43(14), pp. 2722–2727. [CrossRef] [PubMed]
Ghosh, R. , Pal, B. , Ghosh, D. , and Gupta, S. , 2015, “ Finite Element Analysis of a Hemi-Pelvis: The Effect of Inclusion of Cartilage Layer on Acetabular Stresses and Strain,” Comput. Methods Biomech. Biomed. Eng., 18(7), pp. 697–710. [CrossRef]
Yew, A. , Jin, Z. M. , Donn, A. , Morlock, M. M. , and Isaac, G. , 2006, “ Deformation of Press-Fitted Metallic Resurfacing Cups—Part 2: Finite Element Simulation,” Proc. Inst. Mech. Eng., Part H, 220(2), pp. 311–319. [CrossRef]
Liu, F. , Jin, Z. , Roberts, P. , and Grigoris, P. , 2006, “ Importance of Head Diameter, Clearance, and Cup Wall Thickness in Elastohydrodynamic Lubrication Analysis of Metal-on-Metal Hip Resurfacing Prostheses,” Proc. Inst. Mech. Eng., Part H, 220(6), pp. 695–704. [CrossRef]
Bergmann, G. , Deuretzbacher, G. , Heller, M. , Graichen, F. , Rohlmann, A. , Strauss, J. , and Duda, G. N. , 2001, “ Hip Contact Forces and Gait Patterns From Routine Activities,” J. Biomech., 34(7), pp. 859–871. [CrossRef] [PubMed]
Dostal, W. F. , and Andrews, J. G. , 1981, “ A Three-Dimensional Biomechanical Model of Hip Musculature,” J. Biomech., 14(11), pp. 803–812. [CrossRef] [PubMed]
Thompson, M. S. , Northmore-Ball, M. D. , and Tanner, K. E. , 2002, “ Effect of Acetabular Resurfacing Component Material and Fixation on the Strain Distribution in the Pelvis,” Proc. Inst. Mech. Eng., Part H, 216(4), pp. 237–245. [CrossRef]
Clarke, S. G. , Phillips, A. T. M. , and Bull, A. M. J. , 2013, “ Evaluating a Suitable Level of Model Complexity for Finite Element Analysis of the Intact Acetabulum,” Comput. Methods Biomech. Biomed. Eng., 16(7), pp. 717–724. [CrossRef]
Tarala, M. , Waanders, D. , Biemond, J. E. , Hannink, G. , Janssen, D. , Buma, P. , and Verdonschot, N. , 2011, “ The Effect of Bone Ingrowth Depth on the Tensile and Shear Strength of the Implant–Bone e-Beam Produced Interface,” J. Mater. Sci. Mater. Med., 22(10), pp. 2339–2346. [CrossRef] [PubMed]
Liu, X. , and Niebur, G. L. , 2008, “ Bone Ingrowth Into a Porous-Coated Implant Predicted by a Mechano-Regulatory Tissue Differentiation Algorithm,” Biomech. Model Mechanobiol., 7(4), pp. 335–344. [CrossRef] [PubMed]
Andreykiv, A. , Van Keulen, F. , and Prendergast, P. J. , 2008, “ Computational Mechanobiology to Study the Effect of Surface Geometry on Peri-Implant Tissue Differentiation,” ASME J. Biomech. Eng., 130(5), p. 051015. [CrossRef]
Dickinson, A. , Taylor, A. , and Browne, M. , 2012, “ Implant–Bone Interface Healing and Adaptation in Resurfacing Hip Replacement,” Comput. Methods Biomech. Biomed. Eng., 15(9), pp. 935–947. [CrossRef]
Puthumanapully, P. K. , and Browne, M. , 2011, “ Tissue Differentiation Around a Short Stemmed Metaphyseal Loading Implant Employing a Modified Mechanoregulatory Algorithm: A Finite Element Study,” J. Orthop. Res., 29(5), pp. 787–794. [CrossRef] [PubMed]
Mukherjee, K. , and Gupta, S. , 2014, “ Simulation of Tissue Differentiation Around Acetabular Cups: The Effects of Implant-Bone Relative Displacement and Polar Gap,” Adv. Biomech. Appl., 1(2), pp. 95–109. [CrossRef]
Lacroix, D. , and Prendergast, P. J. , 2002, “ A Mechano-Regulation Model for Tissue Differentiation During Fracture Healing: Analysis of Gap Size and Loading,” J. Biomech., 35(9), pp. 1163–1171. [CrossRef] [PubMed]
Lacroix, D. , and Prendergast, P. J. , 2002, “ Three-Dimensional Simulation of Fracture Repair in the Human Tibia,” Comput. Methods Biomech. Biomed. Eng., 5(5), pp. 369–376. [CrossRef]
Claes, L. E. , and Heigele, C. A. , 1999, “ Magnitudes of Local Stress and Strain Along Bony Surfaces Predict the Course and Type of Fracture Healing,” J. Biomech., 32(3), pp. 255–266. [CrossRef] [PubMed]
Lacroix, D. , Prendergast, P. J. , Li, G. , and Marsh, D. , 2002, “ Biomechanical Model to Simulate Tissue Differentiation and Bone Regeneration: Application to Fracture Healing,” Med. Biol. Eng. Comput., 40(1), pp. 14–21. [CrossRef] [PubMed]
Hori, R. Y. , and Lewis, J. L. , 1982, “ Mechanical Properties of the Fibrous Tissue Found at the Bone-Cement Interface Following Total Joint Replacement,” J. Biomed. Mater. Res., 16(6), pp. 911–927. [CrossRef] [PubMed]
Jurvelin, J. S. , Buschmann, M. D. , and Hunziker, E. B. , 1997, “ Optical and Mechanical Determination of Poisson's Ratio of Adult Bovine Humeral Articular Cartilage,” J. Biomech., 30(3), pp. 235–241. [CrossRef] [PubMed]
Montgomery, D. , 2008, Design and Analysis of Experiments, Wiley, Hoboken, NJ.
Phadke, M. S. , 1989, Quality Engineering Using Robust Design, Prentice-Hall, Engelwood Cliffs, NJ.
FDA, 2016, “ Code of Federal Food and Drug Administration Regulations: Hip Joint Metal/Polymer/Metal Semi-Constrained Porous-Coated Uncemented Prosthesis,” US Food and Drug Administration, Silver Spring, MD, accessed June 5, 2016, https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?fr= 888.3358
Isaksson, H. , van Donkelaar, C. C. , Huiskes, R. , Yao, J. , and Ito, K. , 2008, “ Determining the Most Important Cellular Characteristics for Fracture Healing Using Design of Experiments Methods,” J. Theor. Biol., 255(1), pp. 26–39. [CrossRef] [PubMed]
Isaksson, H. , van Donkelaar, C. C. , and Ito, K. , 2009, “ Sensitivity of Tissue Differentiation and Bone Healing Predictions to Tissue Properties,” J. Biomech., 42(5), pp. 555–564. [CrossRef] [PubMed]
Funkenbusch, P. D. , 2005, Practical Guide to Designed Experiments: A Unified Modular Approach, Marcel Dekker, New York.
Dar, F. H. , Meakin, J. R. , and Aspden, R. M. , 2002, “ Statistical Methods in Finite Element Analysis,” J. Biomech., 35(9), pp. 1155–1161. [CrossRef] [PubMed]
Claes, L. E. , Heigele, C. A. , Neidlinger-Wilke, C. , Kaspar, D. , Seidl, W. , Margevicius, K. J. , and Augat, P. , 1998, “ Effects of Mechanical Factors on the Fracture Healing Process,” Clin. Orthop. Relat. Res., 355(Suppl), pp. S132–S147. http://journals.lww.com/corr/Abstract/1998/10001/Effects_of_Mechanical_Factors_on_the_Fracture.15.aspx
FDA, 2006, “ Birmingham Hip Resurfacing (BHR) System: Summary of Safety and Effectiveness Data,” US Food and Drug Administration, Silver Spring, MD, accessed Aug. 21, 2014, http://www.accessdata.fda.gov/cdrh_docs/pdf4/P040033b.pdf
Engh, C. A. , Zettl-Schaffer, K. F. , Kukita, Y. , Sweet, D. , Jasty, M. , and Bragdon, C. , 1993, “ Histological and Radiographic Assessment of Well Functioning Porous-Coated Acetabular Components. A Human Postmortem Retrieval Study,” J. Bone Joint Surg., 75A(6), pp. 814–824. http://jbjs.org/content/75/6/814.long
Hanzlik, J. A. , and Day, J. S. , 2013, “ Bone Ingrowth in Well-Fixed Retrieved Porous Tantalum Implants,” J. Arthroplasty, 28(6), pp. 922–927. [CrossRef] [PubMed]
Claes, L. , Augat, P. , Suger, G. , and Wilke, H. J. , 1997, “ Influence of Size and Stability of the Osteotomy Gap on the Success of Fracture Healing,” J. Orthop. Res., 15(4), pp. 577–584. [CrossRef] [PubMed]
Simon, U. , Augat, P. , Ignatius, A. , and Claes, L. , 2003, “ Influence of the Stiffness of Bone Defect Implants on the Mechanical Conditions at the Interface–A Finite Element Analysis With Contact,” J. Biomech., 36(8), pp. 1079–1086. [CrossRef] [PubMed]
Wong, A. S. , New, A. M. R. , Isaacs, G. , and Taylor, M. , 2005, “ Effect of Bone Material Properties on the Initial Stability of a Cementless Hip Stem: A Finite Element Study,” Proc. Inst. Mech. Eng., Part H, 219(4), pp. 265–275. [CrossRef]
Elliott, B. , and Goswami, T. , 2012, “ Implant Material Properties and Their Role in Micromotion and Failure in Total Hip Arthroplasty,” Int. J. Mech. Mater. Des., 8(1), pp. 1–7. [CrossRef]
Berahmani, S. , Janssen, D. , van Kessel, S. , Wolfson, D. , de Waal Malefijt, M. , Buma, P. , and Verdonschot, N. , 2015, “ An Experimental Study to Investigate Biomechanical Aspects of the Initial Stability of Press-Fit Implants,” J. Mech. Behav. Biomed. Mater., 42, pp. 177–185. [CrossRef] [PubMed]
Marco, F. , Milena, F. , Gianluca, G. , and Vittoria, O. , 2005, “ Peri-Implant Osteogenesis in Health and Osteoporosis,” Micron, 36(7), pp. 630–644. [CrossRef] [PubMed]
Vercaigne, S. , Wolke, J. G. C. , Naert, I. , and Jansen, J. A. , 1998, “ The Effect of Titanium Plasma-Sprayed Implants on Trabecular Bone Healing in the Goat,” Biomaterials, 19(11–12), pp. 1093–1099. [CrossRef] [PubMed]
Hansson, S. , 1999, “ The Implant Neck: Smooth or Provided With Retention Elements. A Biomechanical Approach,” Clin. Oral Implants Res., 10(5), pp. 394–405. [CrossRef] [PubMed]
Cochran, D. L. , Nummikoski, P. V. , Higginbottom, F. L. , Hermann, J. S. , Makins, S. R. , and Buser, D. , 1996, “ Evaluation of an Endosseous Titanim Implant With a Sandblasted and Acid-Etched Surface in the Canine Mandible: Radiographic Results,” Clin. Oral Implants Res., 7(3), pp. 240–252. [CrossRef] [PubMed]
Weng, D. , Hoffmer, M. , Hurzeler, M. B. , and Richter, E. J. , 2003, “ Osseotite vs. Machined Surface in Poor Bone Quality,” Clin. Oral Implants Res., 14(6), pp. 703–708. [CrossRef] [PubMed]
Borsari, V. , Giavaresi, G. , Fini, M. , Torricelli, P. , Tschon, M. , Chiesa, R. , Chiusoli, L. , Salito, A. , Volpert, A. , and Giardino, R. , 2005, “ Comparative In Vitro Study on a Ultra-High Roughness and Dense Titanium Coating,” Biomaterials, 26(24), pp. 4948–4955. [CrossRef] [PubMed]
Martin, J. Y. , Schwartz, Z. , Hummert, T. W. , Schraub, D. M. , Simpson, J., Jr. , Lankfond, J. , Dean, D. D. , Cochran, D. L. , and Boyan, B. D. , 1995, “ Effect of Titanium Surface Roughness on Proliferation, Differentiation, and Protein Synthesis of Human Osteoblast-Like Cells (MG63),” J. Biomed. Mater. Res., 29(3), pp. 389–401. [CrossRef] [PubMed]
Wen, X. , Wang, X. , and Zhang, N. , 1996, “ Microrough Surface of Metallic Biomaterials: A Literature Review,” Bio-Med. Mater. Eng., 6(3), pp. 173–189.
Korovessis, P. G. , and Deligianni, D. D. , 2002, “ Role of Surface Roughness of Titanium Versus Hydroxyapatite on Human Bone Marrow Cells Response,” J. Spinal Disord. Tech., 15(2), pp. 175–183. [CrossRef] [PubMed]
Fini, M. , Giardino, R. , Borsari, V. , Torricelli, P. , Rimondini, R. , Giavaresi, G. , and Nicoli Aldini, N. , 2003, “ In Vitro Behavior of Osteoblasts Cultured on Orthopaedic Biomaterials With Different Roughness, Uncoated and Flourohydroxyapatite-Coated, Relative to the In Vivo Osteointegration Rate,” Int. J. Artif. Organs, 26(6), pp. 520–528. http://www.artificial-organs.com/article/in-vitro-behaviour-of-osteoblasts-cultured-on-orthopaedic-biomaterials-with-different-surface-roughness--uncoated-and-fluorohydroxyapatite-coated--rel-art004266 [PubMed]


Grahic Jump Location
Fig. 1

Details of the microscale model of the implant-bone interface; (a) macroscale implanted pelvis model and microscale implant-bone interface model, (b) isometric view of beaded implant, (c) top view, and (d) zoomed view; H = bead height; D = bead diameter; P = interbead spacing

Grahic Jump Location
Fig. 2

Specifications of the microscale models. H = bead height; D = bead diameter; P = interbead spacing.

Grahic Jump Location
Fig. 6

The progressive bone ingrowth in the eight microscale models

Grahic Jump Location
Fig. 5

Mechanoregulatory bone ingrowth simulation for the eight microscale models: distribution of peri-prosthetic newly formed tissues after attainment of equilibrium in bone ingrowth

Grahic Jump Location
Fig. 4

Mechanoregulatory bone ingrowth simulation for the eight microscale models: distribution of peri-prosthetic newly formed tissues after 20 iterations (days)

Grahic Jump Location
Fig. 3

Mechanoregulatory bone ingrowth simulation for the eight microscale models: distribution of peri-prosthetic newly formed tissues after ten iterations (days)



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In