0
Research Papers

The Mechanics of Single Cell and Collective Migration of Tumor Cells

[+] Author and Article Information
Marianne Lintz, Adam Muñoz

The Nancy E. and Peter C. Meinig
School of Biomedical Engineering,
Cornell University,
309 Weill Hall,
Ithaca, NY 14853

Cynthia A. Reinhart-King

The Nancy E. and Peter C. Meinig
School of Biomedical Engineering,
Cornell University,
302 Weill Hall,
Ithaca, NY 14853
e-mail: cak57@cornell.edu

1Contributed equally to this work.

2Corresponding author.

Manuscript received July 4, 2016; final manuscript received October 28, 2016; published online January 19, 2017. Assoc. Editor: Victor H. Barocas.

J Biomech Eng 139(2), 021005 (Jan 19, 2017) (9 pages) Paper No: BIO-16-1281; doi: 10.1115/1.4035121 History: Received July 04, 2016; Revised October 28, 2016

Metastasis is a dynamic process in which cancer cells navigate the tumor microenvironment, largely guided by external chemical and mechanical cues. Our current understanding of metastatic cell migration has relied primarily on studies of single cell migration, most of which have been performed using two-dimensional (2D) cell culture techniques and, more recently, using three-dimensional (3D) scaffolds. However, the current paradigm focused on single cell movements is shifting toward the idea that collective migration is likely one of the primary modes of migration during metastasis of many solid tumors. Not surprisingly, the mechanics of collective migration differ significantly from single cell movements. As such, techniques must be developed that enable in-depth analysis of collective migration, and those for examining single cell migration should be adopted and modified to study collective migration to allow for accurate comparison of the two. In this review, we will describe engineering approaches for studying metastatic migration, both single cell and collective, and how these approaches have yielded significant insight into the mechanics governing each process.

FIGURES IN THIS ARTICLE
<>
Copyright © 2017 by ASME
Topics: Tumors , Cancer , Stress
Your Session has timed out. Please sign back in to continue.

References

Carey, S. P. , Rahman, A. , Kraning-Rush, C. M. , Romero, B. , Somasegar, S. , Torre, O. M. , Williams, R. M. , and Reinhart-King, C. A. , 2015, “ Comparative Mechanisms of Cancer Cell Migration Through 3D Matrix and Physiological Microtracks,” Am. J. Physiol.: Cell Physiol., 308(6), pp. C436–447. [CrossRef] [PubMed]
Carey, S. P. , D'Alfonso, T. M. , Shin, S. J. , and Reinhart-King, C. A. , 2012, “ Mechanobiology of Tumor Invasion: Engineering Meets Oncology,” Crit. Rev. Oncol. Hematol., 83(2), pp. 170–183. [CrossRef] [PubMed]
Liotta, L. A. , and Stetler-Stevenson, W. G. , 1991, “ Tumor Invasion and Metastasis: An Imbalance of Positive and Negative Regulation,” Cancer Res., 51(Suppl. 18), pp. 5054s–5059s. http://cancerres.aacrjournals.org/content/51/18_Supplement/5054s.full-text.pdf [PubMed]
Chiang, S. P. H. , Cabrera, R. M. , and Segall, J. E. , 2016, “ Tumor Cell Intravasation. A Review in the Theme: Cell and Molecular Processes in Cancer Metastasis,” Am. J. Physiol.: Cell Physiol., 311(1), pp. C1–C14. [CrossRef] [PubMed]
Bersini, S. , Jeon, J. S. , Moretti, M. , and Kamm, R. D. , 2014, “ In Vitro Models of the Metastatic Cascade: From Local Invasion to Extravasation,” Drug Discovery Today, 19(6), pp. 735–742. [CrossRef] [PubMed]
Koop, S. , Schmidt, E. E. , MacDonald, I. C. , Morris, V. L. , Khokha, R. , Grattan, M. , Leone, J. , Chambers, A. F. , and Groom, A. C. , 1996, “ Independence of Metastatic Ability and Extravasation: Metastatic Ras-Transformed and Control Fibroblasts Extravasate Equally Well,” Proc. Natl. Acad. Sci. U.S.A., 93(20), pp. 11080–11084. [CrossRef] [PubMed]
Thiery, J. P. , Acloque, H. , Huang, R. Y. J. , and Nieto, M. A. , 2009, “ Epithelial-Mesenchymal Transitions in Development and Disease,” Cell, 139(5), pp. 871–890. [CrossRef] [PubMed]
Thiery, J. P. , and Lim, C. T. , 2013, “ Tumor Dissemination: An EMT Affair,” Cancer Cell, 23(3), pp. 272–273. [CrossRef] [PubMed]
Nieto, M. A. , Huang, R. Y.-J. , Jackson, R. A. , and Thiery, J. P. , 2016, “ EMT: 2016,” Cell, 166(1), pp. 21–45. [CrossRef] [PubMed]
Friedl, P. , 2004, “ Prespecification and Plasticity: Shifting Mechanisms of Cell Migration,” Curr. Opin. Cell Biol., 16(1), pp. 14–23. [CrossRef] [PubMed]
Duda, D. G. , Duyverman, A. M. M. J. , Kohno, M. , Snuderl, M. , Steller, E. J. A. , Fukumura, D. , and Jain, R. K. , 2010, “ Malignant Cells Facilitate Lung Metastasis by Bringing Their Own Soil,” Proc. Natl. Acad. Sci. U.S.A., 107(50), pp. 21677–21682. [CrossRef] [PubMed]
Gaggioli, C. , Hooper, S. , Hidalgo-Carcedo, C. , Grosse, R. , Marshall, J. F. , Harrington, K. , and Sahai, E. , 2007, “ Fibroblast-Led Collective Invasion of Carcinoma Cells With Differing Roles for RhoGTPases in Leading and Following Cells,” Nat. Cell Biol., 9(12), pp. 1392–1400. [CrossRef] [PubMed]
Hou, J. M. , Krebs, M. G. , Lancashire, L. , Sloane, R. , Backen, A. , Swain, R. K. , Priest, L. J. C. , Greystoke, A. , Zhou, C. , Morris, K. , Ward, T. , Blackhall, F. H. , and Dive, C. , 2012, “ Clinical Significance and Molecular Characteristics of Circulating Tumor Cells and Circulating Tumor Microemboli in Patients With Small-Cell Lung Cancer,” J. Clin. Oncol., 30(5), pp. 525–532. [CrossRef] [PubMed]
Kang, Y. , and Pantel, K. , 2013, “ Tumor Cell Dissemination: Emerging Biological Insights From Animal Models and Cancer Patients,” Cancer Cell, 23(5), pp. 573–581. [CrossRef] [PubMed]
Braun, S. , and Naume, B. , 2005, “ Circulating and Disseminated Tumor Cells,” J. Clin. Oncol., 23(8), pp. 1623–1626. [CrossRef] [PubMed]
Huttenlocher, A. , and Horwitz, A. R. , 2011, “ Integrins in Cell Migration,” Cold Spring Harbor Perspect. Biol., 3(9), p. a005074. [CrossRef]
Hecht, I. , Bar-El, Y. , Balmer, F. , Natan, S. , Tsarfaty, I. , Schweitzer, F. , and Ben-Jacob, E. , 2015, “ Tumor Invasion Optimization by Mesenchymal-Amoeboid Heterogeneity,” Sci. Rep., 5, p. 10622. [CrossRef] [PubMed]
Panková, K. , Rösel, D. , Novotný, M. , and Brábek, J. , 2010, “ The Molecular Mechanisms of Transition Between Mesenchymal and Amoeboid Invasiveness in Tumor Cells,” Cell. Mol. Life Sci., 67(1), pp. 63–71. [CrossRef] [PubMed]
Mak, M. , Spill, F. , Kamm, R. D. , and Zaman, M. H. , 2016, “ Single-Cell Migration in Complex Microenvironments: Mechanics and Signaling Dynamics,” ASME J. Biomech. Eng., 138(2), p. 21004. [CrossRef]
Chi, Q. , Yin, T. , Gregersen, H. , Deng, X. , Fan, Y. , Zhao, J. , Liao, D. , and Wang, G. , 2014, “ Rear Actomyosin Contractility-Driven Directional Cell Migration in Three-Dimensional Matrices: A Mechano-Chemical Coupling Mechanism,” J. R. Soc., Interface, 11(95), p. 20131072. [CrossRef]
Friedl, P. , and Wolf, K. , 2010, “ Plasticity of Cell Migration: A Multiscale Tuning Model,” J. Cell Biol., 188(1), pp. 11–19. [CrossRef] [PubMed]
Gupton, S. L. , and Waterman-Storer, C. M. , 2006, “ Spatiotemporal Feedback Between Actomyosin and Focal-Adhesion Systems Optimizes Rapid Cell Migration,” Cell, 125(7), pp. 1361–1374. [CrossRef] [PubMed]
Raeber, G. P. , Lutolf, M. P. , and Hubbell, J. A. , 2005, “ Molecularly Engineered PEG Hydrogels: A Novel Model System for Proteolytically Mediated Cell Migration,” Biophys. J., 89(2), pp. 1374–1388. [CrossRef] [PubMed]
Peela, N. , Sam, F. S. , Christenson, W. , Truong, D. , Watson, A. W. , Mouneimne, G. , Ros, R. , and Nikkhah, M. , 2016, “ A Three Dimensional Micropatterned Tumor Model for Breast Cancer Cell Migration Studies,” Biomaterials, 81, pp. 72–83. [CrossRef] [PubMed]
Stroka, K. M. , Gu, Z. , Sun, S. X. , and Konstantopoulos, K. , 2014, “ Bioengineering Paradigms for Cell Migration in Confined Microenvironments,” Curr. Opin. Cell Biol., 30, pp. 41–50. [CrossRef] [PubMed]
Mogilner, A. , and Oster, G. , 1996, “ Cell Motility Driven by Actin Polymerization,” Biophys. J., 71(6), pp. 3030–3045. [CrossRef] [PubMed]
Palecek, S. P. , Huttenlocher, A. , Horwitz, A. F. , and Lauffenburger, D. A. , 1998, “ Physical and Biochemical Regulation of Integrin Release During Rear Detachment of Migrating Cells,” J. Cell Sci., 111(7), pp. 929–940. http://jcs.biologists.org/content/111/7/929.long [PubMed]
Smith, J. T. , Elkin, J. T. , and Reichert, W. M. , 2006, “ Directed Cell Migration on Fibronectin Gradients: Effect of Gradient Slope,” Exp. Cell Res., 312(13), pp. 2424–2432. [CrossRef] [PubMed]
Lo, C. M. , Wang, H. B. , Dembo, M. , and Wang, Y. L. , 2000, “ Cell Movement is Guided by the Rigidity of the Substrate,” Biophys. J., 79(1), pp. 144–152. [CrossRef] [PubMed]
Discher, D. E. , Janmey, P. , and Wang, Y.-L. , 2005, “ Tissue Cells Feel and Respond to the Stiffness of Their Substrate,” Science, 310(5751), pp. 1139–1143. [CrossRef] [PubMed]
Stroka, K. M. , and Aranda-Espinoza, H. , 2009, “ Neutrophils Display Biphasic Relationship Between Migration and Substrate Stiffness,” Cell Motil. Cytoskeleton, 66(6), pp. 328–341. [CrossRef] [PubMed]
Zhang, J. , Guo, W.-H. , Rape, A. , and Wang, Y.-L. , 2013, “ Micropatterning Cell Adhesion on Polyacrylamide Hydrogels,” Methods Mol. Biol., 1066, pp. 147–156. [PubMed]
Moore, S. W. , Roca-Cusachs, P. , and Sheetz, M. P. , 2010, “ Stretchy Proteins on Stretchy Substrates: The Important Elements of Integrin-Mediated Rigidity Sensing,” Dev. Cell, 19(2), pp. 194–206. [CrossRef] [PubMed]
Ridley, A. J. , Schwartz, M. A. , Burridge, K. , Firtel, R. A. , Ginsberg, M. H. , Borisy, G. , Parsons, J. T. , and Horwitz, A. R. , 2003, “ Cell Migration: Integrating Signals From Front to Back,” Science, 302(5651), pp. 1704–1709. [CrossRef] [PubMed]
Kim, D.-H. , and Wirtz, D. , 2013, “ Focal Adhesion Size Uniquely Predicts Cell Migration,” FASEB J., 27(4), pp. 1351–1361. [CrossRef] [PubMed]
Goldfinger, L. E. , Han, J. , Kiosses, W. B. , Howe, A. K. , and Ginsberg, M. H. , 2003, “ Spatial Restriction of Alpha4 Integrin Phosphorylation Regulates Lamellipodial Stability and Alpha4beta1-Dependent Cell Migration,” J. Cell Biol., 162(4), pp. 731–741. [CrossRef] [PubMed]
Nishiya, N. , Kiosses, W. B. , Han, J. , and Ginsberg, M. H. , 2005, “ An Alpha4 Integrin-Paxillin-Arf-GAP Complex Restricts Rac Activation to the Leading Edge of Migrating Cells,” Nat. Cell Biol., 7(4), pp. 343–352. [CrossRef] [PubMed]
Baker, B. M. , and Chen, C. S. , 2012, “ Deconstructing the Third Dimension: How 3D Culture Microenvironments Alter Cellular Cues,” J. Cell Sci., 125(Pt 13), pp. 3015–3024. [CrossRef] [PubMed]
Mousavi, S. J. , and Doweidar, M. H. , 2015, “ Three-Dimensional Numerical Model of Cell Morphology During Migration in Multi-Signaling Substrates,” PLoS One, 10(3), p. e0122094. [CrossRef] [PubMed]
Galbraith, C. G. , and Sheetz, M. P. , 1997, “ A Micromachined Device Provides a New Bend on Fibroblast Traction Forces,” Proc. Natl. Acad. Sci. U.S.A., 94(17), pp. 9114–9118. [CrossRef] [PubMed]
Mao, A. S. , Shin, J.-W. , and Mooney, D. J. , 2016, “ Effects of Substrate Stiffness and Cell-Cell Contact on Mesenchymal Stem Cell Differentiation,” Biomaterials, 98, pp. 184–191. [CrossRef] [PubMed]
Wu, P.-H. , Giri, A. , Sun, S. X. , and Wirtz, D. , 2014, “ Three-Dimensional Cell Migration Does Not Follow a Random Walk,” Proc. Natl. Acad. Sci. U.S.A., 111(11), pp. 3949–3954. [CrossRef] [PubMed]
Carey, S. P. , Kraning-Rush, C. M. , Williams, R. M. , and Reinhart-King, C. A. , 2012, “ Biophysical Control of Invasive Tumor Cell Behavior by Extracellular Matrix Microarchitecture,” Biomaterials, 33(16), pp. 4157–4165. [CrossRef] [PubMed]
Starke, J. , Wehrle-Haller, B. , and Friedl, P. , 2014, “ Plasticity of the Actin Cytoskeleton in Response to Extracellular Matrix Nanostructure and Dimensionality,” Biochem. Soc. Trans., 42(5), pp. 1356–1366. [CrossRef] [PubMed]
Hall, M. S. , Long, R. , Feng, X. , Huang, Y. , Hui, C.-Y. , and Wu, M. , 2013, “ Toward Single Cell Traction Microscopy Within 3D Collagen Matrices,” Exp. Cell Res., 319(16), pp. 2396–2408. [CrossRef] [PubMed]
Starke, J. , Maaser, K. , Wehrle-Haller, B. , and Friedl, P. , 2013, “ Mechanotransduction of Mesenchymal Melanoma Cell Invasion Into 3D Collagen Lattices: Filopod-Mediated Extension–Relaxation Cycles and Force Anisotropy,” Exp. Cell Res., 319(16), pp. 2424–2433. [CrossRef] [PubMed]
Provenzano, P. P. , Eliceiri, K. W. , Campbell, J. M. , Inman, D. R. , White, J. G. , and Keely, P. J. , 2006, “ Collagen Reorganization at the Tumor-Stromal Interface Facilitates Local Invasion,” BMC Med., 4(1), p. 38. [CrossRef] [PubMed]
Polacheck, W. J. , Zervantonakis, I. K. , and Kamm, R. D. , 2013, “ Tumor Cell Migration in Complex Microenvironments,” Cell. Mol. Life Sci., 70(8), pp. 1335–1356. [CrossRef] [PubMed]
Kreger, S. T. , Bell, B. J. , Bailey, J. , Stites, E. , Kuske, J. , Waisner, B. , and Voytik-Harbin, S. L. , 2010, “ Polymerization and Matrix Physical Properties as Important Design Considerations for Soluble Collagen Formulations,” Biopolymers, 93(8), pp. 690–707. [PubMed]
Charulatha, V. , and Rajaram, A. , 2003, “ Influence of Different Crosslinking Treatments on the Physical Properties of Collagen Membranes,” Biomaterials, 24(5), pp. 759–767. [CrossRef] [PubMed]
Schultz, K. M. , Kyburz, K. A. , and Anseth, K. S. , 2015, “ Measuring Dynamic Cell-Material Interactions and Remodeling During 3D Human Mesenchymal Stem Cell Migration in Hydrogels,” Proc. Natl. Acad. Sci. U.S.A., 112(29), pp. E3757–3764. [CrossRef] [PubMed]
Li, L.-L. , Shu, X.-S. , Wang, Z.-H. , Cao, Y. , and Tao, Q. , 2011, “ Epigenetic Disruption of Cell Signaling in Nasopharyngeal Carcinoma,” Chin. J. Cancer, 30(4), pp. 231–239. [CrossRef] [PubMed]
Young, E. W. K. , 2013, “ Cells, Tissues, and Organs on Chips: Challenges and Opportunities for the Cancer Tumor Microenvironment,” Integr. Biol. (Cambridge), 5(9), pp. 1096–1109. [CrossRef]
Xia, Y. , and Whitesides, G. M. , 2015, “ Soft Lithography,” Annu. Rev. Mater. Sci., 28, pp. 153–184. [CrossRef]
Friedl, P. , and Alexander, S. , 2011, “ Cancer Invasion and the Microenvironment: Plasticity and Reciprocity,” Cell, 147(5), pp. 992–1009. [CrossRef] [PubMed]
Fraley, S. I. , Feng, Y. , Giri, A. , Longmore, G. D. , and Wirtz, D. , 2012, “ Dimensional and Temporal Controls of Three-Dimensional Cell Migration by Zyxin and Binding Partners,” Nat. Commun., 3, p. 719. [CrossRef] [PubMed]
Tang, H. , Li, A. , Bi, J. , Veltman, D. M. , Zech, T. , Spence, H. J. , Yu, X. , Timpson, P. , Insall, R. H. , Frame, M. C. , and MacHesky, L. M. , 2013, “ Loss of Scar/WAVE Complex Promotes N-WASP-and FAK-Dependent Invasion,” Curr. Biol., 23(2), pp. 107–117. [CrossRef] [PubMed]
Yu, X. , and Machesky, L. M. , 2012, “ Cells Assemble Invadopodia-Like Structures and Invade Into Matrigel in a Matrix Metalloprotease Dependent Manner in the Circular Invasion Assay,” PLoS One, 7(2), p. e30605. [CrossRef] [PubMed]
Zaman, M. H. , Trapani, L. M. , Sieminski, A. L. , Siemeski, A. , Mackellar, D. , Gong, H. , Kamm, R. D. , Wells, A. , Lauffenburger, D. , and Matsudaira, P. , 2006, “ Migration of Tumor Cells in 3D Matrices is Governed by Matrix Stiffness Along With Cell-Matrix Adhesion and Proteolysis,” Proc. Natl. Acad. Sci. U.S.A., 103(29), pp. 10889–10894. [CrossRef] [PubMed]
Provenzano, P. P. , Inman, D. R. , Eliceiri, K. W. , Trier, S. M. , and Keely, P. J. , 2008, “ Contact Guidance Mediated Three-Dimensional Cell Migration is Regulated by Rho/ROCK-Dependent Matrix Reorganization,” Biophys. J., 95(11), pp. 5374–5384. [CrossRef] [PubMed]
Carey, S. P. , Starchenko, A. , McGregor, A. L. , and Reinhart-King, C. A. , 2013, “ Leading Malignant Cells Initiate Collective Epithelial Cell Invasion in a Three-Dimensional Heterotypic Tumor Spheroid Model,” Clin. Exp. Metastasis, 30(5), pp. 615–630. [CrossRef] [PubMed]
Hung, W.-C. , Chen, S.-H. , Paul, C. D. , Stroka, K. M. , Lo, Y.-C. , Yang, J. T. , and Konstantopoulos, K. , 2013, “ Distinct Signaling Mechanisms Regulate Migration in Unconfined Versus Confined Spaces,” J. Cell Biol., 202(5), pp. 807–824. [CrossRef] [PubMed]
Kubow, K. E. , and Horwitz, A. R. , 2011, “ Reducing Background Fluorescence Reveals Adhesions in 3D Matrices,” Nat. Cell Biol., 13(1), pp. 3–5. [CrossRef] [PubMed]
Kraning-Rush, C. M. , Carey, S. P. , Califano, J. P. , Smith, B. N. , and Reinhart-King, C. A. , 2011, “ The Role of the Cytoskeleton in Cellular Force Generation in 2D and 3D Environments,” Phys. Biol., 8(1), p. 15009. [CrossRef]
Kraning-Rush, C. M. , Carey, S. P. , Califano, J. P. , and Reinhart-King, C. A. , 2012, “ Quantifying Traction Stresses in Adherent Cells,” Methods Cell Biol., 110, pp. 139–178. [PubMed]
Ben-Yaakov, D. , Golkov, R. , Shokef, Y. , and Safran, S. A. , 2015, “ Response of Adherent Cells to Mechanical Perturbations of the Surrounding Matrix,” Soft Matter, 11(7), pp. 1412–1424. [CrossRef] [PubMed]
Dembo, M. , and Wang, Y. L. , 1999, “ Stresses at the Cell-to-Substrate Interface During Locomotion of Fibroblasts,” Biophys. J., 76(4), pp. 2307–2316. [CrossRef] [PubMed]
Alcoser, T. A. , Bordeleau, F. , Carey, S. P. , Lampi, M. C. , Kowal, D. R. , Somasegar, S. , Varma, S. , Shin, S. J. , and Reinhart-King, C. A. , 2015, “ Probing the Biophysical Properties of Primary Breast Tumor-Derived Fibroblasts,” Cell. Mol. Bioeng., 8(1), pp. 76–85. [CrossRef] [PubMed]
Trepat, X. , Wasserman, M. R. , Angelini, T. E. , Millet, E. , Weitz, D. A. , Butler, J. P. , and Fredberg, J. J. , 2009, “ Physical Forces During Collective Cell Migration,” Nat. Phys., 5(6), pp. 426–430. [CrossRef]
Kraning-Rush, C. M. , Califano, J. P. , and Reinhart-King, C. A. , 2012, “ Cellular Traction Stresses Increase With Increasing Metastatic Potential,” PLoS One, 7(2), p. e32572. [CrossRef] [PubMed]
Serra-Picamal, X. , Conte, V. , Sunyer, R. , Muñoz, J. J. , and Trepat, X. , 2015, “ Mapping Forces and Kinematics During Collective Cell Migration,” Methods Cell Biol., 125, pp. 309–330. [PubMed]
Tambe, D. T. , Hardin, C. C. , Angelini, T. E. , Rajendran, K. , Park, C. Y. , Serra-Picamal, X. , Zhou, E. H. , Zaman, M. H. , Butler, J. P. , Weitz, D. A. , Fredberg, J. J. , and Trepat, X. , 2011, “ Collective Cell Guidance by Cooperative Intercellular Forces,” Nat. Mater., 10(6), pp. 469–475. [CrossRef] [PubMed]
Legant, W. R. , Choi, C. K. , Miller, J. S. , Shao, L. , Gao, L. , Betzig, E. , and Chen, C. S. , 2013, “ Multidimensional Traction Force Microscopy Reveals Out-of-Plane Rotational Moments About Focal Adhesions,” Proc. Natl. Acad. Sci. U.S.A., 110(3), pp. 881–886. [CrossRef] [PubMed]
Meseke, M. , and Förster, E. , 2013, “ A 3D-Matrigel/Microbead Assay for the Visualization of Mechanical Tractive Forces at the Neurite-Substrate Interface of Cultured Neurons,” J. Biomed. Mater. Res., Part A, 101A(6), pp. 1726–1733. [CrossRef]
Legant, W. R. , Miller, J. S. , Blakely, B. L. , Cohen, D. M. , Genin, G. M. , and Chen, C. S. , 2010, “ Measurement of Mechanical Tractions Exerted by Cells in Three-Dimensional Matrices,” Nat. Methods, 7(12), pp. 969–971. [CrossRef] [PubMed]
Doerschuk, C. M. , Beyers, N. , Coxson, H. O. , Wiggs, B. , and Hogg, J. C. , 1993, “ Comparison of Neutrophil and Capillary Diameters and Their Relation to Neutrophil Sequestration in the Lung,” J. Appl. Physiol., 74(6), pp. 3040–3045. http://jap.physiology.org/content/74/6/3040.long [PubMed]
Stoitzner, P. , Stössel, H. , Romani, N. , and Pfaller, K. , 2002, “ A Close-Up View of Migrating Langerhans Cells in the Skin,” J. Invest. Dermatol., 118(1), pp. 117–125. [CrossRef] [PubMed]
Weigelin, B. , Bakker, G.-J. , and Friedl, P. , 2012, “ Intravital Third Harmonic Generation Microscopy of Collective Melanoma Cell Invasion,” IntraVital, 1(1), pp. 32–43. [CrossRef]
Liu, Z. , Lee, Y. , Jang, J. H. , Li, Y. , Han, X. , Yokoi, K. , Ferrari, M. , Zhou, L. , and Qin, L. , 2015, “ Microfluidic Cytometric Analysis of Cancer Cell Transportability and Invasiveness,” Sci. Rep., 5, p. 14272. [CrossRef] [PubMed]
Fu, Y. , Chin, L. K. , Bourouina, T. , Liu, A. Q. , and VanDongen, A. M. J. , 2012, “ Nuclear Deformation During Breast Cancer Cell Transmigration,” Lab Chip, 12(19), pp. 3774–3778. [CrossRef] [PubMed]
Balzer, E. M. , Tong, Z. , Paul, C. D. , Hung, W.-C. , Stroka, K. M. , Boggs, A. E. , Martin, S. S. , and Konstantopoulos, K. , 2012, “ Physical Confinement Alters Tumor Cell Adhesion and Migration Phenotypes,” FASEB J., 26(10), pp. 4045–4056. [CrossRef] [PubMed]
Liu, Y.-J. , Le Berre, M. , Lautenschlaeger, F. , Maiuri, P. , Callan-Jones, A. , Heuzé, M. , Takaki, T. , Voituriez, R. , and Piel, M. , 2015, “ Confinement and Low Adhesion Induce Fast Amoeboid Migration of Slow Mesenchymal Cells,” Cell, 160(4), pp. 659–672. [CrossRef] [PubMed]
Davidson, P. M. , Denais, C. , Bakshi, M. C. , and Lammerding, J. , 2014, “ Nuclear Deformability Constitutes a Rate-Limiting Step During Cell Migration in 3-D Environments,” Cell. Mol. Bioeng., 7(3), pp. 293–306. [CrossRef] [PubMed]
Baker, E. L. , Bonnecaze, R. T. , and Zaman, M. H. , 2009, “ Extracellular Matrix Stiffness and Architecture Govern Intracellular Rheology in Cancer,” Biophys. J., 97(4), pp. 1013–1021. [CrossRef] [PubMed]
Tseng, Y. , Kole, T. P. , and Wirtz, D. , 2002, “ Micromechanical Mapping of Live Cells by Multiple-Particle-Tracking Microrheology,” Biophys. J., 83(6), pp. 3162–3176. [CrossRef] [PubMed]
Xu, W. , Mezencev, R. , Kim, B. , Wang, L. , McDonald, J. , and Sulchek, T. , 2012, “ Cell Stiffness is a Biomarker of the Metastatic Potential of Ovarian Cancer Cells,” PLoS One, 7(10), p. e46609. [CrossRef] [PubMed]
Swaminathan, V. , Mythreye, K. , O'Brien, E. T. , Berchuck, A. , Blobe, G. C. , and Superfine, R. , 2011, “ Mechanical Stiffness Grades Metastatic Potential in Patient Tumor Cells and in Cancer Cell Lines,” Cancer Res., 71(15), pp. 5075–5080. [CrossRef] [PubMed]
Guck, J. , Ananthakrishnan, R. , Mahmood, H. , Moon, T. J. , Cunningham, C. C. , and Käs, J. , 2001, “ The Optical Stretcher: A Novel Laser Tool to Micromanipulate Cells,” Biophys. J., 81(2), pp. 767–784. [CrossRef] [PubMed]
Ochalek, T. , Nordt, F. J. , Tullberg, K. , Variants, M. C. , and Burger, M. M. , 1988, “ Correlation Between Cell Deformability and Metastatic Potential in B16-F1 Melanoma Cell Variants Correlation Between Cell Deformability and Metastatic Potential in B16-F1,” Cancer Res., 48(18), pp. 5124–5128. http://cancerres.aacrjournals.org/content/47/14/3835.long [PubMed]
Mak, M. , Kamm, R. D. , and Zaman, M. H. , 2014, “ Impact of Dimensionality and Network Disruption on Microrheology of Cancer Cells in 3D Environments,” PLoS Comput. Biol., 10(11), p. e1003959. [CrossRef] [PubMed]
Jones, D. P. , Hanna, W. , El-Hamidi, H. , and Celli, J. P. , 2014, “ Longitudinal Measurement of Extracellular Matrix Rigidity in 3D Tumor Models Using Particle-Tracking Microrheology,” J. Visualized Exp., (88), pp. e51302.
Gal, N. , and Weihs, D. , 2012, “ Intracellular Mechanics and Activity of Breast Cancer Cells Correlate With Metastatic Potential,” Cell Biochem. Biophys., 63(3), pp. 199–209. [CrossRef] [PubMed]
Haase, K. , and Pelling, A. E. , 2015, “ Investigating Cell Mechanics With Atomic Force Microscopy,” J. R. Soc., Interface, 12(104), p. 20140970. [CrossRef]
Alenghat, F. J. , and Ingber, D. E. , 2002, “ Mechanotransduction: All Signals Point to Cytoskeleton, Matrix, and Integrins,” Sci. STKE, 2002(119), p. pe6. http://stke.sciencemag.org/content/2002/119/pe6.long [PubMed]
Volakis, L. I. , Li, R. , Ackerman, W. E., IV , Mihai, C. , Bechel, M. , Summerfield, T. L. , Ahn, C. S. , Powell, H. M. , Zielinski, R. , Rosol, T. J. , Ghadiali, S. N. , and Kniss, D. A. , 2014, “ Loss of Myoferlin Redirects Breast Cancer Cell Motility Towards Collective Migration,” PLoS One, 9(2), p. e86110. [CrossRef] [PubMed]
Mihai, C. , Bao, S. , Lai, J.-P. , Ghadiali, S. N. , and Knoell, D. L. , 2012, “ PTEN Inhibition Improves Wound Healing in Lung Epithelia Through Changes in Cellular Mechanics That Enhance Migration,” Am. J. Physiol.: Lung Cell. Mol. Physiol., 302(3), pp. L287–299. [CrossRef] [PubMed]
Staunton, J. R. , Doss, B. L. , Lindsay, S. , and Ros, R. , 2016, “ Correlating Confocal Microscopy and Atomic Force Indentation Reveals Metastatic Cancer Cells Stiffen During Invasion Into Collagen I Matrices,” Sci. Rep., 6, p. 19686. [CrossRef] [PubMed]
Tartibi, M. , Liu, Y. X. , Liu, G.-Y. , and Komvopoulos, K. , 2015, “ Single-Cell Mechanics—An Experimental–Computational Method for Quantifying the Membrane–Cytoskeleton Elasticity of Cells,” Acta Biomater., 27, pp. 224–235. [CrossRef] [PubMed]
Physical Sciences—Oncology Centers Network, Agus, D. B. , Alexander, J. F. , Arap, W. , Ashili, S. , Aslan, J. E. , Austin, R. H. , Backman, V. , Bethel, K. J. , Bonneau, R. , Chen, W.-C. , Chen-Tanyolac, C. , Choi, N. C. , Curley, S. A. , Dallas, M. , Damania, D. , Davies, P. C. W. , Decuzzi, P. , Dickinson, L. , Estevez-Salmeron, L. , Estrella, V. , Ferrari, M. , Fischbach, C. , Foo, J. , Fraley, S. I. , Frantz, C. , Fuhrmann, A. , Gascard, P. , Gatenby, R. A. , Geng, Y. , Gerecht, S. , Gillies, R. J. , Godin, B. , Grady, W. M. , Greenfield, A. , Hemphill, C. , Hempstead, B. L. , Hielscher, A. , Hillis, W. D. , Holland, E. C. , Ibrahim-Hashim, A. , Jacks, T. , Johnson, R. H. , Joo, A. , Katz, J. E. , Kelbauskas, L. , Kesselman, C. , King, M. R. , Konstantopoulos, K. , Kraning-Rush, C. M. , Kuhn, P. , Kung, K. , Kwee, B. , Lakins, J. N. , Lambert, G. , Liao, D. , Licht, J. D. , Liphardt, J. T. , Liu, L. , Lloyd, M. C. , Lyubimova, A. , Mallick, P. , Marko, J. , McCarty, O. J. T. , Meldrum, D. R. , Michor, F. , Mumenthaler, S. M. , Nandakumar, V. , O'Halloran, T. V. , Oh, S. , Pasqualini, R. , Paszek, M. J. , Philips, K. G. , Poultney, C. S. , Rana, K. , Reinhart-King, C. A. , Ros, R. , Semenza, G. L. , Senechal, P. , Shuler, M. L. , Srinivasan, S. , Staunton, J. R. , Stypula, Y. , Subramanian, H. , Tlsty, T. D. , Tormoen, G. W. , Tseng, Y. , van Oudenaarden, A. , Verbridge, S. S. , Wan, J. C. , Weaver, V. M. , Widom, J. , Will, C. , Wirtz, D. , Wojtkowiak, J. , and Wu, P.-H. , 2013, “ A Physical Sciences Network Characterization of Non-Tumorigenic and Metastatic Cells,” Sci. Rep., 3, p. 1449. [CrossRef] [PubMed]
Plodinec, M. , Loparic, M. , Monnier, C. A. , Obermann, E. C. , Zanetti-Dallenbach, R. , Oertle, P. , Hyotyla, J. T. , Aebi, U. , Bentires-Alj, M. , Lim, R. Y. H. , and Schoenenberger, C.-A. , 2012, “ The Nanomechanical Signature of Breast Cancer,” Nat. Nanotechnol., 7(11), pp. 757–765. [CrossRef] [PubMed]
Mak, M. , and Erickson, D. , 2013, “ A Serial Micropipette Microfluidic Device With Applications to Cancer Cell Repeated Deformation Studies,” Integr. Biol. (Cambridge), 5(11), pp. 1374–1384. [CrossRef]
Mak, M. , Reinhart-King, C. A. , and Erickson, D. , 2013, “ Elucidating Mechanical Transition Effects of Invading Cancer Cells With a Subnucleus-Scaled Microfluidic Serial Dimensional Modulation Device,” Lab Chip, 13(3), pp. 340–348. [CrossRef] [PubMed]
McGregor, A. L. , Hsia, C.-R. , and Lammerding, J. , 2016, “ Squish and Squeeze—The Nucleus as a Physical Barrier During Migration in Confined Environments,” Curr. Opin. Cell Biol., 40, pp. 32–40. [CrossRef] [PubMed]
Wolf, K. , te Lindert, M. , Krause, M. , Alexander, S. , te Riet, J. , Willis, A. L. , Hoffman, R. M. , Figdor, C. G. , Weiss, S. J. , and Friedl, P. , 2013, “ Physical Limits of Cell Migration: Control by ECM Space and Nuclear Deformation and Tuning by Proteolysis and Traction Force,” J. Cell Biol., 201(7), pp. 1069–1084. [CrossRef] [PubMed]
Quigley, J. P. , and Armstrong, P. B. , 1998, “ Tumor Cell Intravasation Alu-Cidated: The Chick Embryo Opens the Window,” Cell, 94(3), pp. 281–284. [CrossRef] [PubMed]
Zervantonakis, I. K. , Hughes-Alford, S. K. , Charest, J. L. , Condeelis, J. S. , Gertler, F. B. , and Kamm, R. D. , 2012, “ Three-Dimensional Microfluidic Model for Tumor Cell Intravasation and Endothelial Barrier Function,” Proc. Natl. Acad. Sci. U.S.A., 109(34), pp. 13515–13520. [CrossRef] [PubMed]
Lee, H. , Park, W. , Ryu, H. , and Jeon, N. L. , 2014, “ A Microfluidic Platform for Quantitative Analysis of Cancer Angiogenesis and Intravasation,” Biomicrofluidics, 8(5), p. 54102. [CrossRef]
Jeon, J. S. , Bersini, S. , Gilardi, M. , Dubini, G. , Charest, J. L. , Moretti, M. , and Kamm, R. D. , 2015, “ Human 3D Vascularized Organotypic Microfluidic Assays to Study Breast Cancer Cell Extravasation,” Proc. Natl. Acad. Sci. U.S.A., 112(1), pp. 214–219. [CrossRef] [PubMed]
Qian, C.-N. , and Teh, B. T. , 2011, “ ‘Seed and Soil’ Theory of Metastasis,” Encyclopedia of Cancer, Springer, Berlin, pp. 3354–3355.
Zhang, Q. , Liu, T. , and Qin, J. , 2012, “ A Microfluidic-Based Device for Study of Transendothelial Invasion of Tumor Aggregates in Realtime,” Lab Chip, 12(16), pp. 2837–2842. [CrossRef] [PubMed]
Jeon, J. S. , Zervantonakis, I. K. , Chung, S. , Kamm, R. D. , and Charest, J. L. , 2013, “ In Vitro Model of Tumor Cell Extravasation,” PLoS One, 8(2), p. e56910. [CrossRef] [PubMed]
Chen, M. B. , Whisler, J. A. , Jeon, J. S. , and Kamm, R. D. , 2013, “ Mechanisms of Tumor Cell Extravasation in an In Vitro Microvascular Network Platform,” Integr. Biol. (Cambridge), 5(10), pp. 1262–1271. [CrossRef]
Riahi, R. , Yang, Y. L. , Kim, H. , Jiang, L. , Wong, P. K. , and Zohar, Y. , 2014, “ A Microfluidic Model for Organ-Specific Extravasation of Circulating Tumor Cells,” Biomicrofluidics, 8(2), p. 24103. [CrossRef]
Fraley, S. I. , Feng, Y. , Krishnamurthy, R. , Kim, D.-H. , Celedon, A. , Longmore, G. D. , and Wirtz, D. , 2010, “ A Distinctive Role for Focal Adhesion Proteins in Three-Dimensional Cell Motility,” Nat. Cell Biol., 12(6), pp. 598–604. [CrossRef] [PubMed]
Chiru, A. A. Z. , Popescu, C. R. , and Gheorghe, D. C. , 2014, “ Enzymatic Aspects in ENT Cancer-Matrix Metalloproteinases,” J. Med. Life, 7(3), pp. 379–380. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4233443/ [PubMed]
Sabeh, F. , Shimizu-Hirota, R. , and Weiss, S. J. , 2009, “ Protease-Dependent Versus-Independent Cancer Cell Invasion Programs: Three-Dimensional Amoeboid Movement Revisited,” J. Cell Biol., 185(1), p. 11. [CrossRef] [PubMed]
Ehrbar, M. , Sala, A. , Lienemann, P. , Ranga, A. , Mosiewicz, K. , Bittermann, A. , Rizzi, S. C. , Weber, F. E. , and Lutolf, M. P. , 2011, “ Elucidating the Role of Matrix Stiffness in 3D Cell Migration and Remodeling,” Biophys. J., 100(2), pp. 284–293. [CrossRef] [PubMed]
Reinhardt, J. W. , Krakauer, D. A. , and Gooch, K. J. , 2013, “ Complex Matrix Remodeling and Durotaxis Can Emerge From Simple Rules for Cell-Matrix Interaction in Agent-Based Models,” ASME J. Biomech. Eng., 135(7), p. 71003. [CrossRef]
Pizzo, A. M. , Kokini, K. , Vaughn, L. C. , Waisner, B. Z. , and Voytik-Harbin, S. L. , 2005, “ Extracellular Matrix (ECM) Microstructural Composition Regulates Local Cell-ECM Biomechanics and Fundamental Fibroblast Behavior: A Multidimensional Perspective,” J. Appl. Physiol., 98(5), pp. 1909–1921. [CrossRef] [PubMed]
Yang, Y. , Motte, S. , and Kaufman, L. J. , 2010, “ Pore Size Variable Type I Collagen Gels and Their Interaction With Glioma Cells,” Biomaterials, 31(21), pp. 5678–5688. [CrossRef] [PubMed]
Roeder, B. A. , Kokini, K. , Sturgis, J. E. , Robinson, J. P. , and Voytik-Harbin, S. L. , 2002, “ Tensile Mechanical Properties of Three-Dimensional Type I Collagen Extracellular Matrices With Varied Microstructure,” ASME J. Biomech. Eng., 124(2), p. 214. [CrossRef]
Wolf, K. , Wu, Y. I. , Liu, Y. , Geiger, J. , Tam, E. , Overall, C. , Stack, M. S. , and Friedl, P. , 2007, “ Multi-Step Pericellular Proteolysis Controls the Transition From Individual to Collective Cancer Cell Invasion,” Nat. Cell Biol., 9(8), pp. 893–904. [CrossRef] [PubMed]
Wyckoff, J. B. , Pinner, S. E. , Gschmeissner, S. , Condeelis, J. S. , and Sahai, E. , 2006, “ ROCK- and Myosin-Dependent Matrix Deformation Enables Protease-Independent Tumor-Cell Invasion In Vivo,” Curr. Biol., 16(15), pp. 1515–1523. [CrossRef] [PubMed]
Rolli, C. G. , Seufferlein, T. , Kemkemer, R. , and Spatz, J. P. , 2010, “ Impact of Tumor Cell Cytoskeleton Organization on Invasiveness and Migration: A Microchannel-Based Approach,” PLoS One, 5(1), p. e8726. [CrossRef] [PubMed]
Mak, M. , Reinhart-King, C. A. , and Erickson, D. , 2011, “ Microfabricated Physical Spatial Gradients for Investigating Cell Migration and Invasion Dynamics,” PLoS One, 6(6), p. e20825. [CrossRef] [PubMed]
Lautscham, L. A. , Kämmerer, C. , Lange, J. R. , Kolb, T. , Mark, C. , Schilling, A. , Strissel, P. L. , Strick, R. , Gluth, C. , Rowat, A. C. , Metzner, C. , and Fabry, B. , 2015, “ Migration in Confined 3D Environments is Determined by a Combination of Adhesiveness, Nuclear Volume, Contractility, and Cell Stiffness,” Biophys. J., 109(5), pp. 900–913. [CrossRef] [PubMed]
Pathak, A. , and Kumar, S. , 2012, “ Independent Regulation of Tumor Cell Migration by Matrix Stiffness and Confinement,” Proc. Natl. Acad. Sci., 109(26), pp. 10334–10339. [CrossRef]
Kraning-Rush, C. M. , Carey, S. P. , Lampi, M. C. , and Reinhart-King, C. A. , 2013, “ Microfabricated Collagen Tracks Facilitate Single Cell Metastatic Invasion in 3D,” Integr. Biol. (Cambridge), 5(3), pp. 606–616. [CrossRef]
Ilina, O. , Bakker, G.-J. , Vasaturo, A. , Hofmann, R. M. , and Friedl, P. , 2011, “ Two-Photon Laser-Generated Microtracks in 3D Collagen Lattices: Principles of MMP-Dependent and -Independent Collective Cancer Cell Invasion,” Phys. Biol., 8(1), p. 15010. [CrossRef]
Friedl, P. , and Gilmour, D. , 2009, “ Collective Cell Migration in Morphogenesis, Regeneration and Cancer,” Nat. Rev. Mol. Cell Biol., 10(7), pp. 445–457. [CrossRef] [PubMed]
Sodek, K. L. , Ringuette, M. J. , and Brown, T. J. , 2009, “ Compact Spheroid Formation by Ovarian Cancer Cells is Associated With Contractile Behavior and an Invasive Phenotype,” Int. J. Cancer, 124(9), pp. 2060–2070. [CrossRef] [PubMed]
Gole, B. , Durán Alonso, M. B. , Dolenc, V. , and Lah, T. , 2009, “ Post-Translational Regulation of Cathepsin B, But Not of Other Cysteine Cathepsins, Contributes to Increased Glioblastoma Cell Invasiveness In Vitro,” Pathol. Oncol. Res., 15(4), pp. 711–723. [CrossRef] [PubMed]
Hauptmann, S. , Budianto, D. , Denkert, C. , Köbel, M. , Borsi, L. , and Siri, A. , 2003, “ Adhesion and Migration of HRT-18 Colorectal Carcinoma Cells on Extracellular Matrix Components Typical for the Desmoplastic Stroma of Colorectal Adenocarcinomas,” Oncology, 65(2), pp. 174–181. [CrossRef] [PubMed]
Sutherland, R. M. , 1986, “ Importance of Critical Metabolites and Cellular Interactions in the Biology of Microregions of Tumors,” Cancer, 58(8), pp. 1668–1680. [CrossRef] [PubMed]
Kumar, S. , Kapoor, A. , Desai, S. , Inamdar, M. M. , and Sen, S. , 2016, “ Proteolytic and Non-Proteolytic Regulation of Collective Cell Invasion: Tuning by ECM Density and Organization,” Sci. Rep., 6, p. 19905. [CrossRef] [PubMed]
Liu, L. , Duclos, G. , Sun, B. , Lee, J. , Wu, A. , Kam, Y. , Sontag, E. D. , Stone, H. A. , Sturm, J. C. , Gatenby, R. A. , and Austin, R. H. , 2013, “ Minimization of Thermodynamic Costs in Cancer Cell Invasion,” Proc. Natl. Acad. Sci., 110(5), pp. 1686–1691. [CrossRef]
Cheung, K. J. , and Ewald, A. J. , 2014, “ Invasive Leader Cells: Metastatic Oncotarget,” Oncotarget, 5(6), pp. 1390–1391. [CrossRef] [PubMed]
Cheung, K. J. , Padmanaban, V. , Silvestri, V. , Schipper, K. , Cohen, J. D. , Fairchild, A. N. , Gorin, M. A. , Verdone, J. E. , Pienta, K. J. , Bader, J. S. , and Ewald, A. J. , 2016, “ Polyclonal Breast Cancer Metastases Arise From Collective Dissemination of Keratin 14-Expressing Tumor Cell Clusters,” Proc. Natl. Acad. Sci., 113(7), p. 201508541. [CrossRef]
Cheung, K. J. , Gabrielson, E. , Werb, Z. , and Ewald, A. J. , 2013, “ Collective Invasion in Breast Cancer Requires a Conserved Basal Epithelial Program,” Cell, 155(7), pp. 1639–1651. [CrossRef] [PubMed]
du Roure, O. , Saez, A. , Buguin, A. , Austin, R. H. , Chavrier, P. , Silberzan, P. , Siberzan, P. , and Ladoux, B. , 2005, “ Force Mapping in Epithelial Cell Migration,” Proc. Natl. Acad. Sci. U.S.A., 102(7), pp. 2390–2395. [CrossRef] [PubMed]
Vaughan, R. B. , and Trinkaus, J. P. , 1966, “ Movements of Epithelial Cell Sheets In Vitro,” J. Cell Sci., 1(4), pp. 407–413. http://jcs.biologists.org/content/1/4/407.long [PubMed]
Omelchenko, T. , Vasiliev, J. M. , Gelfand, I. M. , Feder, H. H. , and Bonder, E. M. , 2003, “ Rho-Dependent Formation of Epithelial ‘Leader’ Cells During Wound Healing,” Proc. Natl. Acad. Sci., 100(19), pp. 10788–10793. [CrossRef]
Friedl, P. , Hegerfeldt, Y. , and Tusch, M. , 2004, “ Collective Cell Migration in Morphogenesis and Cancer,” Int. J. Dev. Biol., 48(5–6), pp. 441–449. [CrossRef] [PubMed]
Gov, N. S. , 2007, “ Collective Cell Migration Patterns: Follow the Leader,” Proc. Natl. Acad. Sci., 104(41), pp. 15970–15971. [CrossRef]
Poujade, M. , Grasland-Mongrain, E. , Hertzog, A. , Jouanneau, J. , Chavrier, P. , Ladoux, B. , Buguin, A. , and Silberzan, P. , 2007, “ Collective Migration of an Epithelial Monolayer in Response to a Model Wound,” Proc. Natl. Acad. Sci. U.S.A., 104(41), pp. 15988–15993. [CrossRef] [PubMed]
Casey, R. C. , Burleson, K. M. , Skubitz, K. M. , Pambuccian, S. E. , Oegema, T. R. , Ruff, L. E. , and Skubitz, A. P. , 2001, “ Beta 1-Integrins Regulate the Formation and Adhesion of Ovarian Carcinoma Multicellular Spheroids,” Am. J. Pathol., 159(6), pp. 2071–2080. [CrossRef] [PubMed]
Ehsan, S. M. , Welch-Reardon, K. M. , Waterman, M. L. , Hughes, C. C. W. , and George, S. C. , 2014, “ A Three-Dimensional In Vitro Model of Tumor Cell Intravasation,” Integr. Biol. (Cambridge), 6(6), pp. 603–610. [CrossRef]
Cheung, K. J. , and Ewald, A. J. , 2016, “ A Collective Route to Metastasis: Seeding by Tumor Cell Clusters,” Science, 352(6282), pp. 167–169. [CrossRef] [PubMed]
Aceto, N. , Bardia, A. , Miyamoto, D. T. , Donaldson, M. C. , Wittner, B. S. , Spencer, J. A. , Yu, M. , Pely, A. , Engstrom, A. , Zhu, H. , Brannigan, B. W. , Kapur, R. , Stott, S. L. , Shioda, T. , Ramaswamy, S. , Ting, D. T. , Lin, C. P. , Toner, M. , Haber, D. A. , and Maheswaran, S. , 2014, “ Circulating Tumor Cell Clusters Are Oligoclonal Precursors of Breast Cancer Metastasis,” Cell, 158(5), pp. 1110–1122. [CrossRef] [PubMed]
Maddipati, R. , and Stanger, B. Z. , 2015, “ Pancreatic Cancer Metastases Harbor Evidence of Polyclonality,” Cancer Discovery, 5(10), pp. 1086–1097. [CrossRef] [PubMed]
Montell, D. J. , 2008, “ Morphogenetic Cell Movements: Diversity From Modular Mechanical Properties,” Science, 322(5907), pp. 1502–1505. [CrossRef] [PubMed]
Valencia, A. M. J. , Wu, P.-H. , Yogurtcu, O. N. , Rao, P. , DiGiacomo, J. , Godet, I. , He, L. , Lee, M.-H. , Gilkes, D. , Sun, S. X. , and Wirtz, D. , 2015, “ Collective Cancer Cell Invasion Induced by Coordinated Contractile Stresses,” Oncotarget, 6(41), pp. 43438–43451. [PubMed]
Rizwan, A. , Bulte, C. , Kalaichelvan, A. , Cheng, M. , Krishnamachary, B. , Bhujwalla, Z. M. , Jiang, L. , and Glunde, K. , 2015, “ Metastatic Breast Cancer Cells in Lymph Nodes Increase Nodal Collagen Density,” Sci. Rep., 5, p. 10002. [CrossRef] [PubMed]
Jain, R. K. , 2005, “ Normalization of Tumor Vasculature: An Emerging Concept in Antiangiogenic Therapy,” Science, 307(5706), pp. 58–62. [CrossRef] [PubMed]
Mason, B. N. , Starchenko, A. , Williams, R. M. , Bonassar, L. J. , and Reinhart-King, C. A. , 2013, “ Tuning Three-Dimensional Collagen Matrix Stiffness Independently of Collagen Concentration Modulates Endothelial Cell Behavior,” Acta Biomater., 9(1), pp. 4635–4644. [CrossRef] [PubMed]
Weiswald, L.-B. , Bellet, D. , and Dangles-Marie, V. , 2015, “ Spherical Cancer Models in Tumor Biology,” Neoplasia, 17(1), pp. 1–15. [CrossRef] [PubMed]
Sutherland, R. M. , 1988, “ Cell and Environment Interactions in Tumor Microregions: The Multicell Spheroid Model,” Science, 240(4849), pp. 177–184. [CrossRef] [PubMed]
Dang, T. T. , Westcott, J. M. , Maine, E. A. , Kanchwala, M. , Xing, C. , and Pearson, G. W. , 2016, “ ΔNp63α Induces the Expression of FAT2 and Slug to Promote Tumor Invasion,” Oncotarget, 7(19), pp. 28592–28611. [PubMed]
Maine, E. A. , Westcott, J. M. , Prechtl, A. M. , Dang, T. T. , Whitehurst, A. W. , and Pearson, G. W. , 2016, “ The Cancer-Testis Antigens SPANX-A/C/D and CTAG2 Promote Breast Cancer Invasion,” Oncotarget, 7(12), pp. 14708–14726. [PubMed]
Westcott, J. M. , Prechtl, A. M. , Maine, E. A. , Dang, T. T. , Esparza, M. A. , Sun, H. , Zhou, Y. , Xie, Y. , and Pearson, G. W. , 2015, “ An Epigenetically Distinct Breast Cancer Cell Subpopulation Promotes Collective Invasion,” J. Clin. Invest., 125(5), pp. 1927–1943. [CrossRef] [PubMed]
Aifuwa, I. , Giri, A. , Longe, N. , Lee, S. H. , An, S. S. , and Wirtz, D. , 2015, “ Senescent Stromal Cells Induce Cancer Cell Migration Via Inhibition of RhoA/ROCK/Myosin-Based Cell Contractility,” Oncotarget, 6(31), pp. 30516–30531. [PubMed]
Okegawa, T. , Pong, R.-C. , Li, Y. , and Hsieh, J.-T. , 2004, “ The Role of Cell Adhesion Molecule in Cancer Progression and Its Application in Cancer Therapy,” Acta Biochim. Pol., 51(2), pp. 445–457. http://www.actabp.pl/pdf/2_2004/445.pdf [PubMed]
Branco da Cunha, C. , Klumpers, D. D. , Koshy, S. T. , Weaver, J. C. , Chaudhuri, O. , Seruca, R. , Carneiro, F. , Granja, P. L. , and Mooney, D. J. , 2016, “ CD44 Alternative Splicing in Gastric Cancer Cells is Regulated by Culture Dimensionality and Matrix Stiffness,” Biomaterials, 98, pp. 152–162. [CrossRef] [PubMed]
Blanchard, G. B. , Kabla, A. J. , Schultz, N. L. , Butler, L. C. , Sanson, B. , Gorfinkiel, N. , Mahadevan, L. , and Adams, R. J. , 2009, “ Tissue Tectonics: Morphogenetic Strain Rates, Cell Shape Change and Intercalation,” Nat. Methods, 6(6), pp. 458–464. [CrossRef] [PubMed]

Figures

Grahic Jump Location
Fig. 1

Cartoon depiction of the metastatic process. (a) To metastasize, cells in the (1) primary tumor, located at position 1; (2) separate and undergo EMT; (3) invading through local tissues surrounding the initial lesion before (4) intravasating from the basement membrane into the vasculature or lymphatic system. Metastatic cells then begin to travel as CTCs or CTM through the vasculature. (b) Cells in the metastatic cluster (5) adhere to the basement membrane and then (6) exit at a distal location in a process called extravasation to (7) form a tumor at a secondary site. Arrows indicate direction of migration.

Grahic Jump Location
Fig. 2

Mechanisms of cell migration. Modes of single cell migration include (a) amoeboid, characterized by blebbing, weak adhesions, and rapid polarity and (b) mesenchymal, characterized by strong stress fibers, polarization, and the presence of a leading and trailing edge. (c) Collective migration consists of a connected unit of cells, fronted by a select few leader cells (indicated by darker cells to the far right).

Grahic Jump Location
Fig. 3

Cartoon representation of single and collective migration assays. (a) Matrix models for studying single cell migration, where cells are either seeded on 2D substrates (bottom) or embedded within 3D substrates (top). (b) Microfluidic model for studying single cell migration. Generally, the horizontal center channel is seeded with metastatically invasive cells in an ECM matrix and the outer horizontal channels are filled with varying types of media or chemogradients. While the vertical channels are used to study the migration characteristics of the cells. (c) Microtrack model for studying single cell migration. (d) Spheroid (left) and organoid (right) models for studying collective migration. Indicated by darker cells in the organoid model represent the heterogeneity of the cells taken from sources such as patient samples, mice, xenografts.

Tables

Errata

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In