Research Papers

A Methodology for Verifying Abdominal Aortic Aneurysm Wall Stress

[+] Author and Article Information
Sergio Ruiz de Galarreta

Department of Mechanical Engineering,
University of Navarra,
Paseo Manuel de Lardizabal, 13,
San Sebastián 20018, Spain
e-mail: sruiz@tecnun.es

Aitor Cazón

Department of Mechanical Engineering,
University of Navarra,
Paseo Manuel de Lardizabal, 13,
San Sebastián 20018, Spain
e-mail: acazon@tecnun.es

Raúl Antón

Department of Mechanical Engineering,
University of Navarra,
Paseo Manuel de Lardizabal, 13,
San Sebastián 20018, Spain
e-mail: ranton@tecnun.es

Ender A. Finol

Department of Biomedical Engineering,
The University of Texas at San Antonio,
One UTSA Circle, AET 1.360,
San Antonio, TX 78249-0669
e-mail: ender.finol@utsa.edu

1Corresponding author.

Manuscript received June 10, 2016; final manuscript received September 6, 2016; published online November 4, 2016. Assoc. Editor: Keefe B. Manning.

J Biomech Eng 139(1), 011006 (Nov 04, 2016) (9 pages) Paper No: BIO-16-1245; doi: 10.1115/1.4034710 History: Received June 10, 2016; Revised September 06, 2016

An abdominal aortic aneurysm (AAA) is a permanent focal dilatation of the abdominal aorta of at least 1.5 times its normal diameter. Although the criterion of maximum diameter is still used in clinical practice to decide on a timely intervention, numerical studies have demonstrated the importance of other geometric factors. However, the major drawback of numerical studies is that they must be validated experimentally before clinical implementation. This work presents a new methodology to verify wall stress predicted from the numerical studies against the experimental testing. To this end, four AAA phantoms were manufactured using vacuum casting. The geometry of each phantom was subject to microcomputed tomography (μCT) scanning at zero and three other intraluminal pressures: 80, 100, and 120 mm Hg. A zero-pressure geometry algorithm was used to calculate the wall stress in the phantom, while the numerical wall stress was calculated with a finite-element analysis (FEA) solver based on the actual zero-pressure geometry subjected to 80, 100, and 120 mm Hg intraluminal pressure loading. Results demonstrate the moderate accuracy of this methodology with small relative differences in the average wall stress (1.14%). Additionally, the contribution of geometric factors to the wall stress distribution was statistically analyzed for the four phantoms. The results showed a significant correlation between wall thickness and mean curvature (MC) with wall stress.

Copyright © 2017 by ASME
Your Session has timed out. Please sign back in to continue.


Sakalihasan, N. , Limet, R. , and Defawe, O. , 2005, “ Abdominal Aortic Aneurysm,” Lancet, 365(9470), pp. 1577–1589. [CrossRef] [PubMed]
Upchurch, G. R. , and Schaub, T. A. , 2006, “ Abdominal Aortic Aneurysm,” Am. Fam. Physician, 73(7), pp. 1198–1206. http://www.aafp.org/afp/2006/0401/p1198.pdf [PubMed]
Fillinger, M. , 2007, “ Who Should We Operate On and How Do We Decide: Predicting Rupture and Survival in Patients With Aortic Aneurysm,” Semin. Vasc. Surg., 20(2), pp. 121–127. [CrossRef] [PubMed]
Doyle, B. J. , Coyle, P. , Kavanagh, E. G. , Grace, P. A. , and Mcgloughlin, T. M. , 2010, “ A Finite Element Analysis Rupture Index (FEARI) Assessment of Electively Repaired and Symptomatic/Ruptured Abdominal Aortic Aneurysms,” IFMBE Proceedings, Singapore, Aug. 1–6, pp. 883–886.
Vande Geest, J. P. , Wang, D. H. J. , Wisniewski, S. R. , Makaroun, M. S. , and Vorp, D. A. , 2006, “ Towards a Noninvasive Method for Determination of Patient-Specific Wall Strength Distribution in Abdominal Aortic Aneurysms,” Ann. Biomed. Eng., 34(7), pp. 1098–1106. [CrossRef] [PubMed]
Kim, J.-H. , Avril, S. , Duprey, A. , and Favre, J.-P. , 2012, “ Experimental Characterization of Rupture in Human Aortic Aneurysms Using a Full-Field Measurement Technique,” Biomech. Model. Mechanobiol., 11(6), pp. 841–853. [CrossRef] [PubMed]
Duprey, A. , Khanafer, K. , Schlicht, M. , Avril, S. , Williams, D. , and Berguer, R. , 2010, “ In Vitro Characterisation of Physiological and Maximum Elastic Modulus of Ascending Thoracic Aortic Aneurysms Using Uniaxial Tensile Testing,” Eur. J. Vasc. Endovasc. Surg., 39(6), pp. 700–707. [CrossRef] [PubMed]
Raghavan, M. L. , Hanaoka, M. M. , Kratzberg, J. A. , Higuchi, M. D. L. , and da Silva, E. S. , 2011, “ Biomechanical Failure Properties and Microstructural Content of Ruptured and Unruptured Abdominal Aortic Aneurysms,” J. Biomech., 44(13), pp. 2501–2507. [CrossRef] [PubMed]
Finol, E. A. , Keyhani, K. , Amon, C. H. , and Raymond, J. , 2003, “ The Effect of Asymmetry in Abdominal Aortic Aneurysms Under Physiologically Realistic Pulsatile Flow Conditions,” ASME J. Biomech. Eng., 125(2), pp. 207–217. [CrossRef]
Raut, S. S. , Chandra, S. , Shum, J. , and Finol, E. A. , 2013, “ The Role of Geometric and Biomechanical Factors in Abdominal Aortic Aneurysm Rupture Risk Assessment,” Ann. Biomed. Eng., 41(7), pp. 1459–1477. [CrossRef] [PubMed]
Raut, S. S. , Jana, A. , De Oliveira, V. , Muluk, S. C. , and Finol, E. A. , 2013, “ The Importance of Patient-Specific Regionally Varying Wall Thickness in Abdominal Aortic Aneurysm Biomechanics,” ASME J. Biomech. Eng., 135(8), p. 81010. [CrossRef]
Martufi, G. , and Gasser, T. C. , 2013, “ Review: The Role of Biomechanical Modeling in the Rupture Risk Assessment for Abdominal Aortic Aneurysms,” ASME J. Biomech. Eng., 135(2), p. 021010. [CrossRef]
Rodriguez, J. F. , Ruiz, C. , Doblaré, M. , and Holzapfel, G. A. , 2008, “ Mechanical Stresses in Abdominal Aortic Aneurysms: Influence of Diameter, Asymmetry, and Material Anisotropy,” ASME J. Biomech. Eng., 130(2), p. 021023. [CrossRef]
Riveros, N. , Martufi, G. , Gasser, T. C. , and Rodriguez-Matas, J. F. , 2015, “ On the Impact of Intraluminal Thrombus Mechanical Behavior in AAA Passive Mechanics,” Ann. Biomed. Eng., 43(9), pp. 2253–2264. [CrossRef] [PubMed]
Antón, R. , Chen, C. , Hung, M. , Finol, E. , and Pekkan, K. , 2015, “ Experimental and Computational Investigation of the Patient-Specific Abdominal Aortic Aneurysm Pressure Field,” Comput. Methods Biomech. Biomed. Eng., 18(9), pp. 981–992. [CrossRef]
Vorp, D. A. , 2007, “ Biomechanics of Abdominal Aortic Aneurysms,” J. Biomech., 40(9), pp. 1887–1902. [CrossRef] [PubMed]
Speelman, L. , Bohra, A. , Bosboom, E. M. H. , Shurink, G. W. H. , van de Vosse, F. N. , Makaroun, M. S. , and Vorp, D. A. , 2006, “ Effects of Wall Calcifications in Patient-Specific Wall Stress Analyses of Abdominal Aortic Aneurysms,” ASME J. Biomech. Eng., 129(1), pp. 105–109. [CrossRef]
Deplano, V. , Knapp, Y. , Bailly, L. , and Bertrand, E. , 2014, “ Flow of a Blood Analogue Fluid in a Compliant Abdominal Aortic Aneurysm Model: Experimental Modelling,” J. Biomech., 47(6), pp. 1262–1269. [CrossRef] [PubMed]
Doyle, B. J. , Cloonan, A. J. , Walsh, M. T. , Vorp, D. A. , and McGloughlin, T. M. , 2010, “ Identification of Rupture Locations in Patient-Specific Abdominal Aortic Aneurysms Using Experimental and Computational Techniques,” J. Biomech., 43(7), pp. 1408–1416. [CrossRef] [PubMed]
Doyle, B. J. , Killion, J. , and Callanan, A. , 2012, “ Use of the Photoelastic Method and Finite Element Analysis in the Assessment of Wall Strain in Abdominal Aortic Aneurysm Models,” J. Biomech., 45(10), pp. 1759–1768. [CrossRef] [PubMed]
Doyle, B. J. , McGloughlin, T. M. , Miller, K. , Powell, J. T. , and Norman, P. E. , 2014, “ Regions of High Wall Stress Can Predict the Future Location of Rupture of Abdominal Aortic Aneurysm,” Cardiovasc. Intervent. Radiol., 37(3), pp. 815–818. [CrossRef] [PubMed]
Raghavan, M. L. , Ma, B. , and Fillinger, M. F. , 2006, “ Non-Invasive Determination of Zero-Pressure Geometry of Arterial Aneurysms,” Ann. Biomed. Eng., 34(9), pp. 1414–1419. [CrossRef] [PubMed]
Raghavan, M. L. , and Vorp, D. A. , 2000, “ Toward a Biomechanical Tool to Evaluate Rupture Potential of Abdominal Aortic Aneurysm: Identification of a Finite Strain Constitutive Model and Evaluation of Its Applicability,” J. Biomech., 33(4), pp. 475–482. [CrossRef] [PubMed]
Shum, J. , Di Martino, E. S. , Goldhammer, A. , Goldman, D. H. , Acker, L. C. , Patel, G. , Ng, J. H. , Martufi, G. , and Finol, E. A. , 2010, “ Semiautomatic Vessel Wall Detection and Quantification of Wall Thickness in Computed Tomography Images of Human Abdominal Aortic Aneurysms,” Med. Phys., 37(2), pp. 638–648. [CrossRef] [PubMed]
Martufi, G. , Di Martino, E. S. , Amon, C. H. , Muluk, S. C. , and Finol, E. A. , 2009, “ Three-Dimensional Geometrical Characterization of Abdominal Aortic Aneurysms: Image-Based Wall Thickness Distribution,” ASME J. Biomech. Eng., 131(6), p. 061015. [CrossRef]
Sack, J. R. , and Urrutia, J. , eds., 2000, Handbook of Computational Geometry, Elsevier, Amsterdam, The Netherlands.
Mullins, L. , 1969, “ Softening of Rubber by Deformation,” Rubber Chem. Technol., 42(1), pp. 339–362. [CrossRef]
Mooney, M. , 1940, “ A Theory of Large Elastic Deformation,” J. Appl. Phys., 11(9), pp. 582–592. [CrossRef]
Sussman, T. , and Bathe, K.-J. , 1987, “ A Finite Element Formulation for Nonlinear Incompressible Elastic and Inelastic Analysis,” Comput. Struct., 26(I), pp. 357–409. [CrossRef]
Riveros, F. , Martufi, G. , Gasser, T. C. , and Rodriguez, J. F. , 2014, “ Influence of ILT Mechanical Behavior in Abdominal Aortic Aneurysms Passive Mechanics,” 11th World Congress on Computational Mechanics (WCCM XI), Barcelona, Spain, July 20–25, pp. 3–4
Riveros, F. , Chandra, S. , Finol, E. A. , Gasser, T. C. , and Rodriguez, J. F. , 2013, “ A Pull-Back Algorithm to Determine the Unloaded Vascular Geometry in Anisotropic Hyperelastic AAA Passive Mechanics,” Ann. Biomed. Eng., 41(4), pp. 694–708. [CrossRef] [PubMed]
Kroon, D. J. , 2011, “ Patch Curvature,” Mathworks, Natick, MA, accessed May 13, 2016, http://www.mathworks.com/matlabcentral/fileexchange/32573-patch-curvature
Vande Geest, J. P. , Sacks, M. S. , and Vorp, D. A. , 2006, “ The Effects of Aneurysm on the Biaxial Mechanical Behavior of Human Abdominal Aorta,” J. Biomech., 39(7), pp. 1324–1334. [CrossRef] [PubMed]
Hans, S. S. , Jareunpoon, O. , Balasubramaniam, M. , and Zelenock, G. B. , 2005, “ Size and Location of Thrombus in Intact and Ruptured Abdominal Aortic Aneurysms,” J. Vasc. Surg., 41(4), pp. 584–588. [CrossRef] [PubMed]
Sakalihasan, N. , and Michel, J. B. , 2009, “ Functional Imaging of Atherosclerosis to Advance Vascular Biology,” Eur. J. Vasc. Endovasc. Surg., 37(6), pp. 728–734. [CrossRef] [PubMed]
O'Leary, S. A. , Mulvihill, J. J. , Barrett, H. E. , Kavanagh, E. G. , Walsh, M. T. , McGloughlin, T. M. , and Doyle, B. J. , 2015, “ Determining the Influence of Calcification on the Failure Properties of Abdominal Aortic Aneurysm (AAA) Tissue,” J. Mech. Behav. Biomed. Mater., 42, pp. 154–167.
Corbett, T. J. , Doyle, B. J. , Callanan, A. , Walsh, M. T. , and McGloughlin, T. M. , 2011, “ Engineering Silicone Rubbers for In Vitro Studies: Models and ILT Analogues With Physiological Properties,” ASME J. Biomech. Eng., 132(1), pp. 1–25.
Xiong, J. , Guo, W. , Wang, J. , and Zhou, W. , 2009, “ Effects of Wall Thickness on Stress Distribution in Patient-Specific Models of Abdominal Aortic Aneurysm,” 2nd International Conference on Biomedical Engineering and Informatics (BMEI '09), Tianjin, China, Oct. 17–19 pp. 9–11.
Barocas, V. H. , 2007, “ Multiscale, Structure-Based Modeling for the Elastic Mechanical Behavior of Arterial Walls,” ASME J. Biomech. Eng., 129(4), pp. 611–618. [CrossRef]
Scotti, C. M. , Jimenez, J. J. , Muluk, S. C. , and Finol, E. A. , 2008, “ Wall Stress and Flow Dynamics in Abdominal Aortic Aneurysms: Finite Element Analysis vs. Fluid-Structure Interaction,” Comput. Methods Biomech. Biomed. Eng., 11(3), pp. 301–322. [CrossRef]
Tang, D. , Yang, C. , Zheng, J. , Woodard, P. K. , Saffitz, J. E. , Sicard, G. A. , Pilgram, T. K. , and Yuan, C. , 2005, “ Quantifying Effects of Plaque Structure and Material Properties on Stress Distributions in Human Atherosclerotic Plaques Using 3D FSI Models,” ASME J. Biomech. Eng., 127(7), pp. 1185–1194. [CrossRef]
Leung, J. H. , Wright, A. R. , Cheshire, N. , Crane, J. , Thom, S. A. , Hughes, A. D. , and Xu, Y. , 2006, “ Fluid Structure Interaction of Patient Specific Abdominal Aortic Aneurysms: A Comparison With Solid Stress Models,” Biomed. Eng. Online, 5, p. 33. [CrossRef] [PubMed]
Li, Z. Y. , U-King-Im, J. , Tang, T. Y. , Soh, E. , See, T. C. , and Gillard, J. H. , 2008, “ Impact of Calcification and Intraluminal Thrombus on the Computed Wall Stresses of Abdominal Aortic Aneurysm,” J. Vasc. Surg., 47(5), pp. 928–935. [CrossRef] [PubMed]
Raut, S. S. , Jana, A. , De Oliveira, V. , Muluk, S. C. , and Finol, E. A. , 2014, “ The Effect of Uncertainty in Vascular Wall Material Properties on Abdominal Aortic Aneurysm Wall Mechanics,” Computational Biomechanics for Medicine, Fundamental Science and Patient-Specific Applications, Springer, New York, pp. 69–86.
Kwon, T. S. , Burek, W. , Dupay, A. C. , Farsad, M. , Baek, S. , Park, E.-A. , and Lee, W. , 2015, “ Interaction of Expanding Abdominal Aortic Aneurysm With Surrounding Tissue: Retrospective CT Image Studies,” J. Nat. Sci., 1(8), p. e150. http://europepmc.org/articles/PMC4666317 [PubMed]
Lu, J. , Zhou, X. , and Raghavan, M. L. , 2007, “ Inverse Elastostatic Stress Analysis in Pre-Deformed Biological Structures: Demonstration Using Abdominal Aortic Aneurysms,” J. Biomech., 40(3), pp. 693–696. [CrossRef] [PubMed]
Alastrué, V. , Peña, E. , Martínez, M. Á. , and Doblaré, M. , 2007, “ Assessing the Use of the ‘Opening Angle Method’ to Enforce Residual Stresses in Specific Arteries,” Ann. Biomed. Eng., 35(10), pp. 1821–1837. [CrossRef] [PubMed]
Rachev, A. , and Greenwald, S. E. , 2003, “ Residual Strains in Conduit Arteries,” J. Biomech., 36(5), pp. 661–670. [CrossRef] [PubMed]


Grahic Jump Location
Fig. 1

Conventional stress–strain diagrams for the 7160 and 7190 materials obtained with uniaxial tensile experiments with an inset illustrating the low strain region of the diagrams

Grahic Jump Location
Fig. 2

Flow diagram of the numerical and experimental protocols followed in this work for the verification of AAA wall stress predicted by FEA

Grahic Jump Location
Fig. 3

Numerical and experimental wall stress distributions for the 7160a and 7190a models

Grahic Jump Location
Fig. 4

The 15 regions of wall stress concentration on the outer (left) and inner (right) wall used for the comparison study

Grahic Jump Location
Fig. 5

Stress versus thickness, stress versus mean curvature, and stress versus Gaussian curvature scatter plots for the 7160a (outer) and 7190b (inner) models

Grahic Jump Location
Fig. 6

Stress, mean curvature, and wall thickness distributions for the 7190a model. Regions #1 and #2 enclose seven representative zones ((a)–(g)) that explain the statistical results.

Grahic Jump Location
Fig. 7

Wall stress distribution in the 7190b model for the three pressure loading conditions



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In