Research Papers

Effects of Prosthetic Mismatch and Subscapularis Tear on Glenohumeral Contact Patterns in Total Shoulder Arthroplasty: A Numerical Musculoskeletal Analysis

[+] Author and Article Information
Lauranne Sins

Laboratoire de recherche
en Imagerie et Orthopédie (LIO),
CHUM Research Centre (CR-CHUM),
Local R11.322, 900 St-Denis Street,
Montréal, QC H2X 0A9, Canada
e-mail: lauranne.sins@gmail.com

Patrice Tétreault

Orthopaedics Surgery Department,
Local DR-1118-16,
Centre Hospitalier de l'Université de Montréal,
Notre-Dame Hospital,
1560 rue Sherbrooke,
Montréal, QC H2L 4M1, Canada
e-mail: p.tetreault.md@gmail.com

Natalia Nuño

Department of Automated
Production Engineering,
École de technologie supérieure,
1100 Notre-Dame Street West,
Montréal, QC H3C 1K3, Canada
e-mail: natalia.nuno@etsmtl.ca

Nicola Hagemeister

Laboratoire de recherche en Imagerie
et Orthopédie (LIO),
CHUM Research Centre (CR-CHUM),
Local R11.322, 900 St-Denis Street,
Montréal, QC H2X 0A9, Canada
e-mail: nicola.hagemeister@etsmtl.ca

1Corresponding author.

Manuscript received February 12, 2016; final manuscript received August 23, 2016; published online November 3, 2016. Assoc. Editor: Tammy L. Haut Donahue.

J Biomech Eng 138(12), 121007 (Nov 03, 2016) (8 pages) Paper No: BIO-16-1058; doi: 10.1115/1.4034654 History: Received February 12, 2016; Revised August 23, 2016

Prosthetic components' mismatch and subscapularis (SC) tear are determining factors for glenoid failure complication in nonconforming total shoulder arthroplasty (NC-TSA). Risk factors are linked to glenoid prosthetic loading. However, the mechanisms underlying the clinical observations remain unclear. This study assessed the combined impact of mismatch and subscapularis tear on glenoid loading. It was assumed that adequate glenoid loading was associated with minimal, but non-null, humeral head translations and contact pressure, as well as with maximal glenoid contact area, and that the center of pressure (COP) on the glenoid would have a centered displacement pattern. A numerical model was used to achieve two objectives. The first was to verify whether an optimum mismatch existed, for which failure risk would be minimal. The second was to explore the effect of subscapularis tear on the position of applied forces on the glenoid. A shoulder AnyBody musculoskeletal model was adapted to the arthroplasty context by introducing humeral head translations and contact between implants. Ten simulations were computed to compare combinations of varying mismatches (1.4 mm, 3.4 mm, 6.4 mm, 8.6 mm, and 9 mm) with two shoulder conditions (intact-muscle or subscapularis tear). Humeral head translations, center-of-pressure, contact area, contact pressure, and glenohumeral joint contact forces were numerically estimated. Mismatches between 3.4 mm and 6.4 mm were associated with the most minimal humeral translations and contact pressure, as well as with maximal contact area. Center of pressure displacement pattern differed according to shoulder condition, with an outward anterior tendency in presence of tear.

Copyright © 2016 by ASME
Your Session has timed out. Please sign back in to continue.


Bohsali, K. I. , 2006, “ Complications of Total Shoulder Arthroplasty,” J. Bone Jt. Surg. Am., 88(10), pp. 2279–2292. [CrossRef]
Strauss, E. J. , Roche, C. , Flurin, P.-H. , Wright, T. , and Zuckerman, J. D. , 2009, “ The Glenoid in Shoulder Arthroplasty,” J. Shoulder Elbow Surg., 18(5), pp. 819–833. [CrossRef] [PubMed]
Franklin, J. L. , Barrett, W. P. , Jackins, S. E. , and Matsen, F. A., III , 1988, “ Glenoid Loosening in Total Shoulder Arthroplasty. Association With Rotator Cuff Deficiency,” J. Arthroplasty, 3(1), pp. 39–46. [CrossRef] [PubMed]
Matsen, F. A., III , Clinton, J. , Lynch, T. L. , Bertelsen, A. , and Richardson, M. L. , 2008, “ Glenoid Component Failure in Total Shoulder Arthroplasty,” J. Bone Jt. Surg. Am., 90(4), pp. 885–896. [CrossRef]
Sperling, J. W. , Hawkins, R. J. , Walch, G. , and Zuckerman, J. D. , 2013, “ Complications in Total Shoulder Arthroplasty,” J. Bone Jt. Surg. Am., 95(6), pp. 563–569.
Severt, R. , Thomas, B. J. , Tsenter, M. J. , Amstutz, H. C. , and Kabo, J. M. , 1993, “ The Influence of Conformity and Constraint on Translational Forces and Frictional Torque in Total Shoulder Arthroplasty,” Clin. Orthop. Relat. Res., 292, pp. 151–158.
Karduna, A. R. , Williams, G. R. J. , Williams, J. L. , and Iannotti, J. P. , 1997, “ Glenohumeral Joint Translations Before and After Total Shoulder Arthroplasty. A Study in Cadavera,” J. Bone Jt. Surg. Am., 79(8), pp. 1166–1174.
Karduna, A. R. , Williams, G. R. J. , Williams, J. L. , and Iannotti, J. P. , 1997, “ Joint Stability After Total Shoulder Arthroplasty in a Cadaver Model,” J. Shoulder Elbow Surg., 6(6), pp. 506–511. [CrossRef] [PubMed]
Sins, L. , Tétreault, P. , Petit, Y. , Nuño, N. , Billuart, F. , and Hagemeister, N. , 2012, “ Effect of Glenoid Implant Design on Glenohumeral Stability: An Experimental Study,” Clin. Biomech., 27(8), pp. 782–788. [CrossRef]
Walch, G. , Edwards, T. B. , Boulahia, A. , Boileau, P. , Mole, D. , and Adeleine, P. , 2002, “ The Influence of Glenohumeral Prosthetic Mismatch on Glenoid Radiolucent Lines: Results of a Multicenter Study,” J. Bone Jt. Surg. Am., 84(12), pp. 2186–2191.
Gleyze, P. , Katz, D. , Valenti, P. , Sauzières, P. , Elkhoti, K. , and Kany, J. , 2013, “ Analyse des incidences de la différence de rayon de courbure entre tête humérale et glène dans les prothèses totales anatomiques—À propos de 107 cas,” Rev. Chir. Orthopedique Traumatologique, 99(7S), p. S364. [CrossRef]
Miller, S. L. , Hazrati, Y. , Klepps, S. , Chiang, A. , and Flatow, E. L. , 2003, “ Loss of Subscapularis Function After Total Shoulder Replacement: A Seldom Recognized Problem,” J. Shoulder Elbow Surg., 12(1), pp. 29–34. [CrossRef] [PubMed]
Blalock, R. , and Galatz, L. M. , 2012, “ Rotator Cuff Tears After Arthroplasty,” Semin. Arthroplasty, 23(2), pp. 114–117. [CrossRef]
Favre, P. , Snedeker, J. G. , and Gerber, C. , 2009, “ Numerical Modelling of the Shoulder for Clinical Applications,” Philos. Trans. A Math. Phys. Eng. Sci., 367(1895), pp. 2095–2118. [CrossRef] [PubMed]
Patel, R. J. , Choi, D. S. , Wright, T. , and Gao, Y. , 2014, “ Nonconforming Glenoid Increases Posterior Glenohumeral Translation After a Total Shoulder Replacement,” J. Shoulder Elbow Surg., 23(12), pp. 1831–1837. [CrossRef] [PubMed]
Terrier, A. , Larrea, X. , Camine, V. M. , Pioletti, D. , and Farron, A. , 2013, “ Importance of the Subscapularis Muscle After Total Shoulder Arthroplasty,” Clin. Biomech., 28(2), pp. 146–150. [CrossRef]
Pandy, M. G. , 2001, “ Computer Modeling and Simulation of Human Movement,” Annu. Rev. Biomed. Eng., 3(1), pp. 245–273. [CrossRef] [PubMed]
Sins, L. , Lemieux, P.-O. , Tétreault, P. , Nuño, N. , Billuart, F. , and Hagemeister, N. , 2012, “ A Numerical Model of Total Shoulder Arthroplasty for Implant Reaction Forces Estimation,” 9th Conference of the International Shoulder Group (ISG), Wales, UK, Aug. 22–24.
Sins, L. , Tétreault, P. , Nuño, N. , and Hagemeister, N. , “ A Musculoskeletal Shoulder Model Using Force Dependent Kinematics to Evaluate Non-Conforming Total Shoulder Arthroplasty,” AnyBody Webcast (published online).
Sins, L. , Tétreault, P. , Hagemeister, N. , and Nuño, N. , 2015, “ Adaptation of the AnyBody™ Musculoskeletal Shoulder Model to the Nonconforming Total Shoulder Arthroplasty Context,” ASME J. Biomech. Eng., 137(10), p. 101006. [CrossRef]
van der Helm, F. C. T. , Veeger, D. H. E. J. , Pronk, G. M. , Van der Woude, L. H. , and Rozendal, R. H. , 1992, “ Geometry Parameters for Musculoskeletal Modelling of the Shoulder System,” J. Biomech., 25(2), pp. 129–144. [CrossRef] [PubMed]
Veeger, D. H. E. J. , van der Helm, F. C. T. , Van der Woude, L. H. , Pronk, G. M. , and Rozendal, R. H. , 1991, “ Inertia and Muscle Contraction Parameters for Musculoskeletal Modelling of the Shoulder Mechanism,” J. Biomech., 24(7), pp. 615–629. [CrossRef] [PubMed]
Gupta, S. , and van der Helm, F. C. T. , 2004, “ Load Transfer Across the Scapula During Humeral Abduction,” J. Biomech., 37(7), pp. 1001–1009. [CrossRef] [PubMed]
Rasmussen, J. , 2007, “ Validation of the AnyBody Version of the Dutch Shoulder Model,” http://www.anybodytech.com/199.0.html
Charlton, I. W. , and Johnson, G. R. , 2006, “ A Model for the Prediction of the Forces at the Glenohumeral Joint,” Proc. Inst. Mech. Eng., Part H, 220(8), pp. 801–812. [CrossRef]
Karlsson, D. , and Peterson, B. , 1992, “ Towards a Model for Force Predictions in the Human Shoulder,” J. Biomech., 25(2), pp. 189–199. [CrossRef] [PubMed]
Masjedi, M. , Lovell, C. , and Johnson, G. R. , 2011, “ Comparison of Range of Motion and Function of Subjects With Reverse Anatomy Bayley-Walker Shoulder Replacement With Those of Normal Subjects,” Hum. Mov. Sci., 30(6), pp. 1062–1071. [CrossRef] [PubMed]
Nikooyan, A. A. , Veeger, D. H. E. J. , Chadwick, E. K. J. , Praagman, M. , and van der Helm, F. C. T. , 2011, “ Development of a Comprehensive Musculoskeletal Model of the Shoulder and Elbow,” Med. Biol. Eng. Comput., 49(12), pp. 1425–1435. [CrossRef] [PubMed]
Quental, C. , Folgado, J. , Ambrósio, J. , and Monteiro, J. , 2012, “ A Multibody Biomechanical Model of the Upper Limb Including the Shoulder Girdle,” Multibody Syst. Dyn., 28(1–2), pp. 83–108. [CrossRef]
Bei, Y. , and Fregly, B. J. , 2004, “ Multibody Dynamic Simulation of Knee Contact Mechanics,” Med. Eng. Phys., 26(9), pp. 777–789. [CrossRef] [PubMed]
Zajac, F. E. , 1989, “ Muscle and Tendon: Properties, Models, Scaling, and Application to Biomechanics and Motor Control,” Crit. Rev. Biomed. Eng., 17(4), pp. 359–411. [PubMed]
Damsgaard, M. , Rasmussen, J. , Christensen, S. T. , Surma, E. , and de Zee, M. , 2006, “ Analysis of Musculoskeletal Systems in the AnyBody Modeling System,” Simul. Modell. Pract. Theory, 14(8), pp. 1100–1111. [CrossRef]
Wu, G. , van der Helm, F. C. T. , Veeger, D. H. E. J. , Makhsous, M. , Van Roy, P. , Anglin, C. , Nagels, J. , Karduna, A. R. , McQuade, K. , Wang, X. , Werner, F. W. , and Buchholz, B. , 2005, “ ISB Recommendation on Definitions of Joint Coordinate Systems of Various Joints for the Reporting of Human Joint Motion—Part II: Shoulder, Elbow, Wrist and Hand,” J. Biomech., 38(5), pp. 981–992. [CrossRef] [PubMed]
de Groot, J. H. , and Brand, R. , 2001, “ A Three-Dimensional Regression Model of the Shoulder Rhythm,” Clin. Biomech., 16(9), pp. 735–743. [CrossRef]
Bey, M. J. , Kline, S. K. , Zauel, R. , Lock, T. R. , and Kolowich, P. A. , 2008, “ Measuring Dynamic In-Vivo Glenohumeral Joint Kinematics: Technique and Preliminary Results,” J. Biomech., 41(3), pp. 711–714. [CrossRef] [PubMed]
Graichen, H. , Hinterwimmer, S. , von Eisenhart-Rothe, R. , Vogl, T. , Englmeier, K.-H. , and Eckstein, F. , 2005, “ Effect of Abducting and Adducting Muscle Activity on Glenohumeral Translation, Scapular Kinematics and Subacromial Space Width in vivo,” J. Biomech., 38(4), pp. 755–760. [CrossRef] [PubMed]
Braman, J. P. , Falicov, A. , Boorman, R. , and Matsen, F. A., III , 2006, “ Alterations in Surface Geometry in Retrieved Polyethylene Glenoid Component,” J. Orthop. Res., 24(6), pp. 1249–1260. [CrossRef] [PubMed]
Hopkins, A. R. , Hansen, U. , Amis, A. , Knight, L. , Taylor, M. , Levy, O. , and Copeland, S. A. , 2007, “ Wear in the Prosthetic Shoulder: Association With Design Parameters,” ASME J. Biomech. Eng., 129(2), pp. 223–230.
Hertel, R. , and Ballmer, F. T. , 2003, “ Observations on Retrieved Glenoid Components,” J. Arthroplasty, 18(3), pp. 361–366. [CrossRef] [PubMed]
Nho, S. J. , Ala, O. L. , Dodson, C. C. , Figgie, M. P. , Wright, T. M. , Craig, E. V. , and Warren, R. F. , 2008, “ Comparison of Conforming and Nonconforming Retrieved Glenoid Components,” J. Shoulder Elbow Surg., 17(6), pp. 914–920. [CrossRef] [PubMed]
Utz, C. J. , Bauer, T. W. , and Iannotti, J. P. , 2011, “ Glenoid Component Loosening Due to Deficient Subscapularis: A Case Study of Eccentric Loading,” J. Shoulder Elbow Surg., 20(8), pp. e16–21. [CrossRef] [PubMed]
Hammond, G. , Tibone, J. E. , McGarry, M. H. , Jun, B. J. , and Lee, T. Q. , 2012, “ Biomechanical Comparison of Anatomic Humeral Head Resurfacing and Hemiarthroplasty in Functional Glenohumeral Positions,” J. Bone Jt. Surg. Am., 94(1), pp. 68–76. [CrossRef]
Soslowsky, L. J. , Flatow, E. L. , Bigras, P. , Pawluk, R. J. , Ateshian, G. A. , and Mow, V. C. , 1992, “ Quantitation of In Situ Contact Areas at the Glenohumeral Joint: A Biomechanical Study,” J. Orthop. Res., 10(4), pp. 524–534. [CrossRef] [PubMed]
Terrier, A. , Büchler, P. , and Farron, A. , 2006, “ Influence of Glenohumeral Conformity on Glenoid Stresses After Total Shoulder Arthroplasty,” J. Shoulder Elbow Surg., 15(4), pp. 515–520. [CrossRef] [PubMed]
Bergmann, G. , Graichen, F. , Kääb, M. , Westerhoff, P. , Beier, A. , Bender, A. , and Rohlmann, A. , 2007, “ in vivo Glenohumeral Contact Forces—Measurements in the First Patient 7 Months Postoperatively,” J. Biomech., 40(10), pp. 2139–2149. [CrossRef] [PubMed]
Inman, V. T. , Saunders, J. B. , and Abbott, L. C. , 1944, “ Observations of the Function of the Shoulder Joint,” J. Bone Joint Surg. Am., 26(1), pp. 1–30.
van der Helm, F. C. T. , 1994, “ Analysis of the Kinematic and Dynamic Behavior of the Shoulder Mechanism,” J. Biomech., 27(5), pp. 527–550. [CrossRef] [PubMed]
Lund, M. E. , de Zee, M. , Andersen, M. S. , and Rasmussen, J. , 2012, “ On Validation of Multibody Musculoskeletal Models,” Proc. Inst. Mech. Eng., Part H, 226(2), pp. 82–94. [CrossRef]


Grahic Jump Location
Fig. 1

(a) Workflow of inverse dynamic analysis (adapted from Ref. [17]) and (b) workflow of inverse dynamic analysis with the force-dependent algorithm. q, q̇, q̈: respectively, position, velocity, acceleration of each bone segment, I(q)q̇: inertial forces and torques (vector), C(q)q̇2: centrifugal and Coriolis forces and torques (vector), G(q): gravitational forces and torques (vector), G(q): muscle moment arms (matrix), FMT: musculotendon (MT) forces (vector), R(q)FMT: torques (vector), F: joint forces, and C(q,q̇): external forces and torques applied to the body by the environment (vector).

Grahic Jump Location
Fig. 2

Representation of the two components (humeral head and glenoid) placed in the shoulder model. The figure represents a 6.4 mm mismatch.

Grahic Jump Location
Fig. 3

Range of humeral head translations in inferior–superior (IS) and anterior–posterior (AP) directions

Grahic Jump Location
Fig. 4

Positions of contact area and center of pressure. The five mismatches are depicted, at five degrees of elevation in the scapular plane (15 deg, 30 deg, 60 deg, 90 deg, and 120 deg). For each case, the contact area for an intact-muscle shoulder (black line) and a shoulder with a subscapularis tear (gray line) are drawn. The centers of pressure are represented by the cross sign.

Grahic Jump Location
Fig. 5

Contact area values at the end of elevation (maximal values)

Grahic Jump Location
Fig. 6

Pattern of displacement of the center of pressure (COP) during elevation in the scapular plane. The figure shows the values for the 6.4 mm mismatch, corresponding to a combination of a medium glenoid size and a Ø51 mm humeral head size. COP position is represented in black for the intact-muscle shoulder, and in gray for the subscapularis-tear shoulder.

Grahic Jump Location
Fig. 7

Glenohumeral joint reaction force and glenohumeral contact pressure at arm elevation of 90 deg



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In