Research Papers

Patient-Specific Computational Analysis of Ventricular Mechanics in Pulmonary Arterial Hypertension

[+] Author and Article Information
Ce Xi, Candace Latnie

Department of Mechanical Engineering,
Michigan State University,
East Lansing, MI 48824-1226

Xiaodan Zhao, Ju Le Tan

National Heart Center Singapore,
Singapore, Singapore 169609

Samuel T. Wall

Simula Research Laboratory,
Fornebu 1364, Norway

Martin Genet

École Polytechnique,
Université Paris-Saclay;
Université Paris-Saclay,
Palaiseau 91128, France

Liang Zhong

National Heart Center Singapore,
Singapore, Singapore 169609;
Duke-NUS Medical School,
Singapore, Singapore 169857

Lik Chuan Lee

Department of Mechanical Engineering,
Michigan State University,
East Lansing, MI 48824-1226
e-mail: lclee@egr.msu.edu

1Corresponding author.

Manuscript received May 14, 2016; final manuscript received August 12, 2016; published online October 21, 2016. Assoc. Editor: Jessica E. Wagenseil.

J Biomech Eng 138(11), 111001 (Oct 21, 2016) (9 pages) Paper No: BIO-16-1200; doi: 10.1115/1.4034559 History: Received May 14, 2016; Revised August 12, 2016

Patient-specific biventricular computational models associated with a normal subject and a pulmonary arterial hypertension (PAH) patient were developed to investigate the disease effects on ventricular mechanics. These models were developed using geometry reconstructed from magnetic resonance (MR) images, and constitutive descriptors of passive and active mechanics in cardiac tissues. Model parameter values associated with ventricular mechanical properties and myofiber architecture were obtained by fitting the models with measured pressure–volume loops and circumferential strain calculated from MR images using a hyperelastic warping method. Results show that the peak right ventricle (RV) pressure was substantially higher in the PAH patient (65 mmHg versus 20 mmHg), who also has a significantly reduced ejection fraction (EF) in both ventricles (left ventricle (LV): 39% versus 66% and RV: 18% versus 64%). Peak systolic circumferential strain was comparatively lower in both the left ventricle (LV) and RV free wall (RVFW) of the PAH patient (LV: −6.8% versus −13.2% and RVFW: −2.1% versus −9.4%). Passive stiffness, contractility, and myofiber stress in the PAH patient were all found to be substantially increased in both ventricles, whereas septum wall in the PAH patient possessed a smaller curvature than that in the LV free wall. Simulations using the PAH model revealed an approximately linear relationship between the septum curvature and the transseptal pressure gradient at both early-diastole and end-systole. These findings suggest that PAH can induce LV remodeling, and septum curvature measurements may be useful in quantifying transseptal pressure gradient in PAH patients.

Copyright © 2016 by ASME
Your Session has timed out. Please sign back in to continue.


McLaughlin, V. V. , Archer, S. L. , Badesch, D. B. , Barst, R. J. , Farber, H. W. , Lindner, J. R. , Mathier, M. A. , McGoon, M. D. , Park, M. H. , Rosenson, R. S. , Rubin, L. J. , Tapson, V . F. , and Varga, J. , 2009, “ ACCF/AHA 2009 Expert Consensus Document on Pulmonary Hypertension: A Report of the American College of Cardiology Foundation Task Force on Expert Consensus Documents and the American Heart Association Developed in Collaboration With the American College of Chest Physicians; American Thoracic Society, Inc.; and the Pulmonary Hypertension Association,” J. Am. Coll. Cardiol., 53(17), pp. 1573–1619. [CrossRef] [PubMed]
Thenappan, T. , Shah, S. J. , Rich, S. , and Gomberg-Maitland, M. , 2007, “ A USA-Based Registry for Pulmonary Arterial Hypertension: 1982–2006,” Eur. Respir. J., 30(6), pp. 1103–1110. [CrossRef] [PubMed]
Humbert, M. , Sitbon, O. , Yaïci, A. , Montani, D. , O’Callaghan, D. S. , Jaïs, X. , Parent, F. , Savale, L. , Natali, D. , Günther, S. , Chaouat, A. , Chabot, F. , Cordier, J. F. , Habib, G. , Gressin, V. , Jing, Z. C. , Souza, R. , and Simonneau, G. , 2010, “ Survival in Incident and Prevalent Cohorts of Patients With Pulmonary Arterial Hypertension,” Eur. Respir. J., 36(3), pp. 549–555. [CrossRef] [PubMed]
Vonk Noordegraaf, A. , and Galiè, N. , 2011, “ The Role of the Right Ventricle in Pulmonary Arterial Hypertension,” Eur. Respir. Rev., 20(122), pp. 243–253. [CrossRef] [PubMed]
Jessup, M. , Sutton, M. S. , Weber, K. T. , and Janicki, J. S. , 1987, “ The Effect of Chronic Pulmonary Hypertension on Left Ventricular Size, Function, and Interventricular Septal Motion,” Am. Heart J., 113(5), pp. 1114–1122. [CrossRef] [PubMed]
Borgdorff, M. A. J. , Dickinson, M. G. , Berger, R. M. F. , and Bartelds, B. , 2015, “ Right Ventricular Failure Due to Chronic Pressure Load: What Have We Learned in Animal Models Since the NIH Working Group Statement?” Heart Failure Rev., 20(4), pp. 475–491. [CrossRef]
Hill, M. R. , Simon, M. A. , Valdez-Jasso, D. , Zhang, W. , Champion, H. C. , and Sacks, M. S. , 2014, “ Structural and Mechanical Adaptations of Right Ventricle Free Wall Myocardium to Pressure Overload,” Ann. Biomed. Eng., 42(12), pp. 2451–2465. [CrossRef] [PubMed]
Wang, Z. , Schreier, D. A. , Hacker, T. A. , and Chesler, N. C. , 2013, “ Progressive Right Ventricular Functional and Structural Changes in a Mouse Model of Pulmonary Arterial Hypertension,” Physiol. Rep., 1(7), p. e00184. [CrossRef] [PubMed]
McCabe, C. , White, P. A. , Hoole, S. P. , Axell, R. G. , Priest, A. N. , Gopalan, D. , Taboada, D. , MacKenzie Ross, R. , Morrell, N. W. , Shapiro, L. M. , and Pepke-Zaba, J. , 2014, “ Right Ventricular Dysfunction in Chronic Thromboembolic Obstruction of the Pulmonary Artery: A Pressure–Volume Study Using the Conductance Catheter,” J. Appl. Physiol., 116(29), pp. 355–363. [CrossRef] [PubMed]
Trip, P. , Rain, S. , Handoko, M. L. , Van Der Bruggen, C. , Bogaard, H. J. , Marcus, J. T. , Boonstra, A. , Westerhof, N. , Vonk-Noordegraaf, A. , and De Man, F. S. , 2015, “ Clinical Relevance of Right Ventricular Diastolic Stiffness in Pulmonary Hypertension,” Eur. Respir. J., 45(6), pp. 1603–1612. [CrossRef] [PubMed]
Lee, L. C. , Wenk, J. F. , Klepach, D. , Zhang, Z. , Saloner, D. , Wallace, A. W. , Ge, L. , Ratcliffe, M. B. , and Guccione, J. M. , 2011, “ A Novel Method for Quantifying In-Vivo Regional Left Ventricular Myocardial Contractility in the Border Zone of a Myocardial Infarction,” ASME J. Biomech. Eng., 133(9), p. 094506. [CrossRef]
Aguado-Sierra, J. , Krishnamurthy, A. , Villongco, C. , Chuang, J. , Howard, E. , Gonzales, M. J. , Omens, J. , Krummen, D. E. , Narayan, S. , Kerckhoffs, R. C. P. , and McCulloch, A. D. , 2011, “ Patient-Specific Modeling of Dyssynchronous Heart Failure: A Case Study,” Prog. Biophys. Mol. Biol., 107(1), pp. 147–155. [CrossRef] [PubMed]
Baillargeon, B. , Costa, I. , Leach, J. R. , Lee, L. C. , Genet, M. , Toutain, A. , Wenk, J. F. , Rausch, M. K. , Rebelo, N. , Acevedo-Bolton, G. , Kuhl, E. , Navia, J. L. , and Guccione, J. M. , 2015, “ Human Cardiac Function Simulator for the Optimal Design of a Novel Annuloplasty Ring With a Sub-Valvular Element for Correction of Ischemic Mitral Regurgitation,” Cardiovasc. Eng. Technol., 6(2), pp. 105–116. [CrossRef] [PubMed]
Wenk, J. F. , Zhang, Z. , Cheng, G. , Malhotra, D. , Acevedo-Bolton, G. , Burger, M. , Suzuki, T. , Saloner, D. A. , Wallace, A. W. , Guccione, J. M. , and Ratcliffe, M. B. , 2010, “ First Finite Element Model of the Left Ventricle With Mitral Valve: Insights Into Ischemic Mitral Regurgitation,” Ann. Thorac. Surg., 89(5), pp. 1546–1553. [CrossRef] [PubMed]
Lee, L. C. , Wall, S. T. , Genet, M. , Hinson, A. , and Guccione, J. M. , 2014, “ Bioinjection Treatment: Effects of Post-Injection Residual Stress on Left Ventricular Wall Stress,” J. Biomech., 47(12), pp. 3115–3119. [CrossRef] [PubMed]
Hunter, K. S. , Feinstein, J. A. , Ivy, D. D. , and Shandas, R. , 2010, “ Computational Simulation of the Pulmonary Arteries and Its Role in the Study of Pediatric Pulmonary Hypertension,” Prog. Pediatr. Cardiol., 30(1–2), pp. 63–69. [CrossRef] [PubMed]
Kheyfets, V . O. , Rios, L. , Smith, T. , Schroeder, T. , Mueller, J. , Murali, S. , Lasorda, D. , Zikos, A. , Spotti, J. , Reilly, J. J. , and Finol, E. A. , 2015, “ Patient-Specific Computational Modeling of Blood Flow in the Pulmonary Arterial Circulation,” Comput. Methods Programs Biomed., 120(2), pp. 88–101. [CrossRef] [PubMed]
Voelkel, N. F. , Quaife, R. A. , Leinwand, L. A. , Barst, R. J. , McGoon, M. D. , Meldrum, D. R. , Dupuis, J. , Long, C. S. , Rubin, L. J. , Smart, F. W. , Suzuki, Y. J. , Gladwin, M. , Denholm, E. M. , and Gail, D. B. , 2006, “ Right Ventricular Function and Failure: Report of a National Heart, Lung, and Blood Institute Working Group on Cellular and Molecular Mechanisms of Right Heart Failure,” Circulation, 114(17), pp. 1883–1891. [CrossRef] [PubMed]
Geuzaine, C. , and Remacle, J.-F. F. , 2009, “ Gmsh: A 3-D Finite Element Mesh Generator With Built-In Pre- and Post-Processing Facilities,” Int. J. Numer. Methods Eng., 79(11), pp. 1309–1331. [CrossRef]
Redington, A. N. , Gray, H. H. , Hodson, M. E. , Rigby, M. L. , and Oldershaw, P. J. , 1988, “ Characterisation of the Normal Right Ventricular Pressure–Volume Relation by Biplane Angiography and Simultaneous Micromanometer Pressure Measurements,” Br. Heart J., 59(1), pp. 23–30. [CrossRef] [PubMed]
Kelly, R. P. , Ting, C. T. , Yang, T. M. , Liu, C. P. , Maughan, W. L. , Chang, M. S. , and Kass, D. A. , 1992, “ Effective Arterial Elastance as Index of Arterial Vascular Load in Humans,” Circulation, 86(2), pp. 513–521. [CrossRef] [PubMed]
Maas, S. A. , Ellis, B. J. , Ateshian, G. A. , and Weiss, J. A. , 2012, “ FEBio: Finite Elements for Biomechanics,” ASME J. Biomech. Eng., 134(1 ), p. 011005. [CrossRef]
Veress, A. I. , Gullberg, G. T. , and Weiss, J. A. , 2005, “ Measurement of Strain in the Left Ventricle During Diastole With Cine-MRI and Deformable Image Registration,” ASME J. Biomech. Eng., 127(7), pp. 1195–1207. [CrossRef]
Phatak, N. S. , Maas, S. A. , Veress, A. I. , Pack, N. A. , Di Bella, E. V. R. , and Weiss, J. A. , 2009, “ Strain Measurement in the Left Ventricle During Systole With Deformable Image Registration,” Med. Image Anal., 13(2), pp. 354–361. [CrossRef] [PubMed]
Bayer, J. D. , Blake, R. C. , Plank, G. , and Trayanova, N. A. , 2012, “ A Novel Rule-Based Algorithm for Assigning Myocardial Fiber Orientation to Computational Heart Models,” Ann. Biomed. Eng., 40(10), pp. 2243–2254. [CrossRef] [PubMed]
Streeter, D. D. , Spotnitz, H. M. , Patel, D. P. , Ross, J. , and Sonnenblick, E. H. , 1969, “ Fiber Orientation in the Canine Left Ventricle During Diastole and Systole,” Circ. Res., 24(3), pp. 339–347. [CrossRef] [PubMed]
Sundnes, J. , Wall, S. , Osnes, H. , Thorvaldsen, T. , and McCulloch, A. D. , 2012, “ Improved Discretisation and Linearisation of Active Tension in Strongly Coupled Cardiac Electro-Mechanics Simulations,” Comput. Methods Biomech. Biomed. Eng., 17(6), pp. 604–615. [CrossRef]
Lee, L. , Sundnes, J. , Genet, M. , Wenk, J. , and Wall, S. T. , 2016, “ An Integrated Electromechanical-Reversible Growth Heart Model for Simulating Cardiac Therapies,” Biomech. Model. Mechanobiol., 15(4), pp. 791–803. [CrossRef] [PubMed]
Winslow, R. L. , Rice, J. , Jafri, S. , Marban, E. , and O’Rourke, B. , 1999, “ Mechanisms of Altered Excitation–Contraction Coupling in Canine Tachycardia-Induced Heart Failure, II: Model Studies,” Circ. Res., 84(5), pp. 571–586. [CrossRef] [PubMed]
Rice, J. J. , Wang, F. , Bers, D. M. , and de Tombe, P. P. , 2008, “ Approximate Model of Cooperative Activation and Crossbridge Cycling in Cardiac Muscle Using Ordinary Differential Equations,” Biophys. J., 95(5), pp. 2368–2390. [CrossRef] [PubMed]
Moskowitz, S. E. , 1981, “ Effects of Inertia and Viscoelasticity in Late Rapid Filling of the Left Ventricle,” J. Biomech., 14(6), pp. 443–445. [CrossRef] [PubMed]
Walker, J. C. , Ratcliffe, M. B. , Zhang, P. , Wallace, A. W. , Hsu, E. W. , Saloner, D. A. , and Guccione, J. M. , 2008, “ Magnetic Resonance Imaging-Based Finite Element Stress Analysis After Linear Repair of Left Ventricular Aneurysm,” J. Thorac. Cardiovasc. Surg., 135(5), pp. 1094–1102.e2. [CrossRef] [PubMed]
Smith, B. C. F. , Dobson, G. , Dawson, D. , Charalampopoulos, A. , Grapsa, J. , and Nihoyannopoulos, P. , 2014, “ Three-Dimensional Speckle Tracking of the Right Ventricle: Toward Optimal Quantification of Right Ventricular Dysfunction in Pulmonary Hypertension,” J. Am. Coll. Cardiol., 64(1), pp. 41–51. [CrossRef] [PubMed]
Oyama-Manabe, N. , Sato, T. , Tsujino, I. , Kudo, K. , Manabe, O. , Kato, F. , Osman, N. F. , and Terae, S. , 2013, “ The Strain-Encoded (SENC) MR Imaging for Detection of Global Right Ventricular Dysfunction in Pulmonary Hypertension,” Int. J. Cardiovasc. Imaging, 29(2), pp. 371–378. [CrossRef] [PubMed]
Puwanant, S. , Park, M. , Popović, Z. B. , Tang, W. H. W. , Farha, S. , George, D. , Sharp, J. , Puntawangkoon, J. , Loyd, J. E. , Erzurum, S. C. , and Thomas, J. D. , 2010, “ Ventricular Geometry, Strain, and Rotational Mechanics in Pulmonary Hypertension,” Circulation, 121(2), pp. 259–266. [CrossRef] [PubMed]
Bellofiore, A. , and Chesler, N. C. , 2013, “ Methods for Measuring Right Ventricular Function and Hemodynamic Coupling With the Pulmonary Vasculature,” Ann. Biomed. Eng., 41(7), pp. 1384–1398. [CrossRef] [PubMed]
Cohn, J. N. , Ferrari, R. , and Sharpe, N. , 2000, “ Cardiac Remodeling Concepts and Clinical Implications: A Consensus Paper From an International Forum on Cardiac Remodeling,” J. Am. Coll. Cardiol., 35(3), pp. 569–582. [CrossRef] [PubMed]
Rain, S. , Handoko, L. , Trip, P. , Gan, T.-J. , Westerhof, N. , Stienen, G. , Paulus, W. , Ottenheijm, C. , Marcus, T. , Dorfmüller, P. , Guignabert, C. , Humbert, M. , MacDonald, P. , dos Remedios, C. , Postmus, P. , Saripalli, C. , Hidalgo, C. , Granzier, H. , Vonk-Noordegraaf, A. , van der Velden, J. , and de Man, F. , 2013, “ Right Ventricular Diastolic Impairment in Patients With Pulmonary Arterial Hypertension,” Circulation, 128(18), pp. 2016–2025. [CrossRef] [PubMed]
De Man, F. S. , Handoko, M. L. , Van Ballegoij, J. J. M. , Schalij, I. , Bogaards, S. J. P. , Postmus, P. E. , Van Der Velden, J. , Westerhof, N. , Paulus, W. J. , and Vonk-Noordegraaf, A. , 2012, “ Bisoprolol Delays Progression Towards Right Heart Failure in Experimental Pulmonary Hypertension,” Circ.: Heart Failure, 5(1), pp. 97–105. [CrossRef]
Vonk-Noordegraaf, A. , Haddad, F. , Chin, K. M. , Forfia, P. R. , Kawut, S. M. , Lumens, J. , Naeije, R. , Newman, J. , Oudiz, R. J. , Provencher, S. , Torbicki, A. , Voelkel, N. F. , and Hassoun, P. M. , 2013, “ Right Heart Adaptation to Pulmonary Arterial Hypertension: Physiology and Pathobiology,” J. Am. Coll. Cardiol., 62(Suppl. 25), pp. D22–D33. [CrossRef] [PubMed]
Hardziyenka, M. , Campian, M. E. , Verkerk, A. O. , Surie, S. , van Ginneken, A. C. , Hakim, S. , Linnenbank, A. C. , de Bruin-Bon, H. A. , Beekman, L. , van der Plas, M. N. , Remme, C. A. , van Veen, T. A. , Bresser, P. , de Bakker, J. M. , and Tan, H. L. , 2012, “ Electrophysiologic Remodeling of the Left Ventricle in Pressure Overload-Induced Right Ventricular Failure,” J. Am. Coll. Cardiol., 59(24), pp. 2193–2202. [CrossRef] [PubMed]
Haddad, F. , Hunt, S. A. , Rosenthal, D. N. , and Murphy, D. J. , 2008, “ Right Ventricular Function in Cardiovascular Disease, Part I: Anatomy, Physiology, Aging, and Functional Assessment of the Right Ventricle,” Circulation, 117(11), pp. 1436–1448. [CrossRef] [PubMed]
Marcus, J. T. , Vonk Noordegraaf, A. , Roeleveld, R. J. , Postmus, P. E. , Heethaar, R. M. , Van Rossum, A. C. , and Boonstra, A. , 2001, “ Impaired Left Ventricular Filling Due to Right Ventricular Pressure Overload in Primary Pulmonary Hypertension: Noninvasive Monitoring Using MRI,” Chest, 119(6), pp. 1761–1765. [CrossRef] [PubMed]
Tanaka, H. , Tei, C. , Nakao, S. , Tahara, M. , Sakurai, S. , Kashima, T. , and Kanehisa, T. , 1980, “ Diastolic Bulging of the Interventricular Septum Toward the Left Ventricle. An Echocardiographic Manifestation of Negative Interventricular Pressure Gradient Between Left and Right Ventricles During Diastole,” Circulation, 62(3), pp. 558–563. [CrossRef] [PubMed]
Beyar, R. , Dong, S. J. , Smith, E. R. , Belenkie, I. , and Tyberg, J. V. , 1993, “ Ventricular Interaction and Septal Deformation: A Model Compared With Experimental Data,” Am. J. Physiol., 265(6 Pt. 2), pp. H2044–H2056. [PubMed]
King, M. E. , Braun, H. , Goldblatt, A. , Liberthson, R. , and Weyman, A. E. , 1983, “ Interventricular Septal Configuration as a Predictor of Right Ventricular Systolic Hypertension in Children: A Cross-Sectional Echocardiographic Study,” Circulation, 68(1), pp. 68–75. [CrossRef] [PubMed]
Zhong, L. , Su, Y. , Yeo, S.-Y. , Tan, R.-S. , Ghista, D. N. , and Kassab, G. , 2009, “ Left Ventricular Regional Wall Curvedness and Wall Stress in Patients With Ischemic Dilated Cardiomyopathy,” Am. J. Physiol.: Heart Circ. Physiol., 296(3), pp. H573–H584. [CrossRef] [PubMed]
Zhong, L. , Su, Y. , Gobeawan, L. , Sola, S. , Tan, R.-S. , Navia, J. L. , Ghista, D. N. , Chua, T. , Guccione, J. , and Kassab, G. S. , 2011, “ Impact of Surgical Ventricular Restoration on Ventricular Shape, Wall Stress, and Function in Heart Failure Patients,” Am. J. Physiol.: Heart Circ. Physiol., 300(5), pp. H1653–H1660. [CrossRef] [PubMed]
Zhong, L. , Gobeawan, L. , Su, Y. , Tan, J.-L. , Ghista, D. , Chua, T. , Tan, R.-S. , and Kassab, G. , 2012, “ Right Ventricular Regional Wall Curvedness and Area Strain in Patients With Repaired Tetralogy of Fallot,” Am. J. Physiol.: Heart Circ. Physiol., 302(6), pp. H1306–H1316. [CrossRef] [PubMed]
Walker, J. C. , Ratcliffe, M. B. , Zhang, P. , Wallace, A. W. , Fata, B. , Hsu, E. W. , Saloner, D. , and Guccione, J. M. , 2005, “ MRI-Based Finite-Element Analysis of Left Ventricular Aneurysm,” Am. J. Physiol., 289(2), pp. H692–H700.
Kerckhoffs, R. C. P. , 2010, Patient-Specific Modeling of the Cardiovascular System: Technology-Driven Personalized Medicine, Springer Science + Business Media, New York, pp. 1–240.
Genet, M. , Lee, L. C. , Nguyen, R. , Haraldsson, H. , Acevedo-Bolton, G. , Zhang, Z. , Ge, L. , Ordovas, K. , Kozerke, S. , and Guccione, J. M. , 2014, “ Distribution of Normal Human Left Ventricular Myofiber Stress at End-Diastole and End-Systole—A Target for In Silico Studies of Cardiac Procedures,” J. Appl. Physiol., 117(2), pp. 142–152. [CrossRef] [PubMed]


Grahic Jump Location
Fig. 1

(a) Biventricular geometry reconstructed from MR images with LV (right, light region) and RVFW (left, dark region) material regions. (b) Myofiber orientation prescribed using LDRB method with a transmural variation of 60 deg (endo) to −60 deg (epi) for the entire biventricular model. (c) Coupling the biventricular model to three-element Windkessel models. (d) Polar coordinate used to calculate local curvature κ in the LV endocardium.

Grahic Jump Location
Fig. 2

Measurements and model predictions of the PV loops for the (a) PAH patient and (b) normal subject (marker “*” denotes end-systole)

Grahic Jump Location
Fig. 3

Circumferential strain Ecc for (a) PAH patient and (b) normal subject. (c) Comparison of regional peak negative Ecc between the PAH patient and normal subject.

Grahic Jump Location
Fig. 4

Peak myofiber stress in the PAH patient (left) and normal subject (right)

Grahic Jump Location
Fig. 6

Effects of afterload on septum curvature within a cardiac cycle. (a) Time course of κ with different RV afterload. (b) End-systolic curvature κmax,s versus end-systolic transseptal pressure gradient. (c) Corresponding PV loops.

Grahic Jump Location
Fig. 5

Regional curvature κ in the LV endocardial surface of (a) PAH patient and (b) normal subject. (c) Comparison of normalized septum curvature κn between PAH patient and normal subject.

Grahic Jump Location
Fig. 7

Effects of preload on septum curvature within a cardiac cycle. (a) Time course of κ with different RV preload. (b) Early-diastolic curvature κmax,d versus early-diastolic transseptal pressure gradient. (c) Corresponding PV loops.

Grahic Jump Location
Fig. 8

PV loops for perturbation of different model parameters in the normal case

Grahic Jump Location
Fig. 9

PV loops of the normal case using fitted PAH model parameters



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In