Research Papers

The Impact of Posture on the Mechanical Properties of a Functional Spinal Unit During Cyclic Compressive Loading

[+] Author and Article Information
Jeff M. Barrett

Department of Kinesiology,
University of Waterloo,
200 University Avenue West,
Waterloo, ON N2L 6P2, Canada
e-mail: jeffery.barrett@uwaterloo.ca

Chad E. Gooyers

Giffin Koerth Forensic Engineering and Science,
40 University Avenue,
Toronto, ON M5J 1T1, Canada
e-mail: cgooyers@giffinkoerth.com

Thomas Karakolis

Defence Research and Development Canada,
1133 Sheppard Avenue West,
Toronto, ON M3K 2C9, Canada
e-mail: thomas.karakolis@drdc-rddc.gc.ca

Jack P. Callaghan

Mem. ASME,
Department of Kinesiology,
University of Waterloo,
Burt Matthews Hall, Room 3122,
200 University Avenue West,
Waterloo, ON N2L 6P2, Canada
e-mail: jack.callaghan@uwaterloo.ca

1Corresponding author.

Manuscript received October 15, 2015; final manuscript received June 10, 2016; published online July 8, 2016. Assoc. Editor: Brian D. Stemper.

J Biomech Eng 138(8), 081007 (Jul 08, 2016) (7 pages) Paper No: BIO-15-1516; doi: 10.1115/1.4033916 History: Received October 15, 2015; Revised June 10, 2016

To assess how posture affects the transmission of mechanical energy up the spinal column during vibration, 18 porcine functional spinal units (FSUs) were exposed to a sinusoidal force (1500 ± 1200 N) at 5 Hz for 120 min in either a flexed, extended, or neutral posture. Force and FSU height were measured continuously throughout the collection. From these data, specimen height loss, dynamic stiffness, hysteresis, and parameters from a standard linear solid (SLS) model were determined and analyzed for differences between postures. Posture had an influence on all of these parameters. In extension, the FSU had higher dynamic stiffness values than when neutral or flexed (p < 0.0001). In flexion, the FSU had higher hysteresis than both an extended or neutral posture (p < 0.0001). Height loss was greatest in a flexed posture and smallest in an extended posture (p < 0.0001). In extension, the series spring element in the SLS model had a stiffness value higher than both flexed and neutral posture conditions, whereas the stiffness in the parallel spring was the same between extension and neutral (p < 0.01), both higher than in flexion. Viscosity coefficients were highest in extension compared to both flexed and neutral (p < 0.01). Based on these results, it was determined that posture had a significant influence in determining the mechanical properties of the spine when exposed to cyclic compressive loading.

Copyright © 2016 by ASME
Your Session has timed out. Please sign back in to continue.


Frymoyer, J. W. , Pope, M. H. , Costanza, M. C. , Rosen, J. C. , Goggin, J. E. , and Wilder, D. G. , 1980, “ Epidemiologic Studies of Low-Back Pain,” Spine, 5(5), pp. 419–423. [CrossRef] [PubMed]
Wilder, D. G. , Pope, M. H. , and Frymoyer, J. W. , 1988, “ The Biomechanics of Lumbar Disc Herniation and the Effect of Overload and Instability,” J. Spinal Disord., 1(1), pp. 16–32. [CrossRef] [PubMed]
Dupuis, H. , and Zerlett, G. , 1987, “ Whole-Body Vibration and Disorders of the Spine,” Int. Arch. Occup. Environ. Health, 59(4), pp. 323–336. [CrossRef] [PubMed]
Pope, M. H. , Wilder, D. G. , and Magnusson, M. L. , 1999, “ A Review of Studies on Seated Whole Body Vibration and Low Back Pain,” Proc. Inst. Mech. Eng. H, 213(6), pp. 435–446. [CrossRef] [PubMed]
Hansson, T. , Magnusson, M. , and Broman, H. , 1991, “ Back Muscle Fatigue and Seated Whole Body Vibrations: An Experimental Study in Man,” Clin. Biomech., 6(3), pp. 173–178. [CrossRef]
Sélard, E. , Shirazi-Adl, A. , and Urban, J. P. G. , 2003, “ Finite Element Study of Nutrient Diffusion in the Human Intervertebral Disc,” Spine, 28(17), pp. 1945–1953; discussion 1953. [CrossRef] [PubMed]
Pope, M. H. , Magnusson, M. , and Wilder, D. G. , 1998, “ Low Back Pain and Whole Body Vibration,” Clin. Orthop. Relat. Res., 354, pp. 241–248. [CrossRef] [PubMed]
Cavanaugh, J. M. , Ozaktay, A. C. , Yamashita, H. T. , and King, A. I. , 1996, “ Lumbar Facet Pain: Biomechanics, Neuroanatomy and Neurophysiology,” J. Biomech., 29(9), pp. 1117–1129. [CrossRef] [PubMed]
Van der Veen, A. J. , Mullender, M. G. , Kingma, I. , Van, J. H. , and Smit, T. H. , 2008, “ Contribution of Verftebral Bodies, Endplates, and Intervertebral Discs to the Compression Creep of Spinal Motion Segments,” J. Biomech., 41(6), pp. 1260–1268. [CrossRef] [PubMed]
Hill, T. E. , Desmoulin, G. T. , and Hunter, C. J. , 2009, “ Is Vibration Truly an Injurious Stimulus in the Human Spine?,” J. Biomech., 42(16), pp. 2631–2635. [CrossRef] [PubMed]
Kittusamy, N. K. , and Buchholz, B. , 2004, “ Whole-Body Vibration and Postural Stress Among Operators of Construction Equipment: A Literature Review,” J. Saf. Res., 35(3), pp. 255–261. [CrossRef]
Kitazaki, S. , and Griffin, M. J. , 1998, “ Resonance Behaviour of the Seated Human Body and Effects of Posture,” J. Biomech., 31(2), pp. 143–149. [CrossRef] [PubMed]
Gooyers, C. E. , McMillan, R. D. , Howarth, S. J. , and Callaghan, J. P. , 2012, “ The Impact of Posture and Prolonged Cyclic Compressive Loading on Vertebral Joint Mechanics,” Spine, 37(17), pp. E1023–E1029. [CrossRef] [PubMed]
Adams, M. A. , May, S. , Freeman, B. J. , Morrison, H. P. , and Dolan, P. , 2000, “ Effects of Backward Bending on Lumbar Intervertebral Discs. Relevance to Physical Therapy Treatments for Low Back Pain,” Spine, 25(4), pp. 431–437; discussion 438. [CrossRef] [PubMed]
Edwards, W. T. , Ordway, N. R. , Zheng, Y. , McCullen, G. , Han, Z. , and Yuan, H. A. , 2001, “ Peak Stresses Observed in the Posterior Lateral Anulus,” Spine, 26(16), pp. 1753–1759. [CrossRef] [PubMed]
Shirazi-Adl, A. , and Drouin, G. , 1987, “ Load-Bearing Role of Facets in a Lumbar Segment Under Sagittal Plane Loadings,” J. Biomech., 20(6), pp. 601–613. [CrossRef] [PubMed]
Adams, M. A. , and Hutton, W. C. , 1980, “ The Effect of Posture on the Role of the Apophysial Joints in Resisting Intervertebral Compressive Forces,” J. Bone Joint Surg. Br., 62(3), pp. 358–362. [PubMed]
Niosi, C. A. , Wilson, D. C. , Zhu, Q. , Keynan, O. , Wilson, D. R. , and Oxland, T. R. , 2008, “ The Effect of Dynamic Posterior Stabilization on Facet Joint Contact Forces: An In Vitro Investigation,” Spine, 33(1), pp. 19–26. [CrossRef] [PubMed]
Hedman, T. P. , and Fernie, G. R. , 1997, “ Mechanical Response of the Lumbar Spine to Seated Postural Loads,” Spine, 22(7), pp. 734–743. [CrossRef] [PubMed]
Cheung, J. T. M. , Zhang, M. , and Chow, D. H. K. , 2003, “ Biomechanical Responses of the Intervertebral Joints to Static and Vibrational Loading: A Finite Element Study,” Clin. Biomech., 18(9), pp. 790–799. [CrossRef]
Kuo, C.-S. , Hu, H.-T. , Lin, R.-M. , Huang, K.-Y. , Lin, P.-C. , Zhong, Z.-C. , and Hseih, M.-L. , 2010, “ Biomechanical Analysis of the Lumbar Spine on Facet Joint Force and Intradiscal Pressure: A Finite Element Study,” BMC Musculoskeletal Disord., 11(1), p. 151. [CrossRef]
Schmidt, H. , Bashkuev, M. , Dreischarf, M. , Rohlmann, A. , Duda, G. , Wilke, H. J. , and Shirazi-Adl, A. , 2013, “ Computational Biomechanics of a Lumbar Motion Segment in Pure and Combined Shear Loads,” J. Biomech., 46(14), pp. 2513–2521. [CrossRef] [PubMed]
Paddan, G. S. , and Griffin, M. J. , 1988, “ The Transmission of Translational Seat Vibration to the Head—I: Vertical Seat Vibration,” J. Biomech., 21(3), pp. 191–197. [CrossRef] [PubMed]
Keller, T. S. , Spengler, D. M. , and Hansson, T. H. , 1987, “ Mechanical Behavior of the Human Lumbar Spine—I: Creep Analysis During Static Compressive Loading,” J. Orthop. Res., 5(4), pp. 467–78. [CrossRef] [PubMed]
Race, A. , Broom, N. D. , and Robertson, P. , 2000, “ Effect of Loading Rate and Hydration on the Mechanical Properties of the Disc,” Spine, 25(6), pp. 662–669. [CrossRef] [PubMed]
Keller, T. S. , Holm, S. H. , Hansson, T. H. , and Spengler, D. M. , 1990, “ 1990 Volvo Award in Experimental Studies. The Dependence of Intervertebral Disc Mechanical Properties on Physiologic Conditions,” Spine, 15(8), pp. 751–761. [PubMed]
Smeathers, J. E. , 1984, “ Some Time Dependent Properties of the Intervertebral Joint When Under Compression,” Eng. Med., 13(2), pp. 83–87. [CrossRef] [PubMed]
Burns, M. L. , Kaleps, I. , and Kazarian, L. E. , 1984, “ Analysis of Compressive Creep Behavior of the Vertebral Unit Subjected to a Uniform Axial Loading Using Exact Parametric Solution Equations of Kelvin-Solid Models—Part I: Human Intervertebral Joints,” J. Biomech., 17(2), pp. 113–130. [CrossRef] [PubMed]
Ekström, L. , Kaigle, A. , Hult, E. , Holm, S. , Rostedt, M. , and Hansson, T. , 1996, “ Intervertebral Disc Response to Cyclic Loading—An Animal Model,” Proc. Inst. Mech. Eng. H, 210(4), pp. 249–258. [CrossRef] [PubMed]
Fung, Y. C. , and Cowin, S. C. , 1994, “ Biomechanics: Mechanical Properties of Living Tissues, 2nd ed.,” ASME J. Appl. Mech., 61(4), p. 1007. [CrossRef]
Kaleps, I. , Kazarian, L. E. , and Burns, M. L. , 1984, “ Analysis of Compressive Creep Behavior of the Vertebral Unit Subjected to a Uniform Axial Loading Using Exact Parametric Solution Equations of Kelvin-Solid Models—Part II: Rhesus Monkey Intervertebral Joints,” J. Biomech., 17(2), pp. 131–136. [CrossRef] [PubMed]
Wei, L. , and Griffin, M. J. , 1998, “ Mathematical Models for the Apparent Mass of the Seated Human Body Exposed to Vertical Vibration,” J. Sound Vib., 212(5), pp. 855–874. [CrossRef]
Johannessen, W. , Vresilovic, E. J. , Wright, A. C. , and Elliott, D. M. , 2004, “ Intervertebral Disc Mechanics are Restored Following Cyclic Loading and Unloaded Recovery,” Ann. Biomed. Eng., 32(1), pp. 70–76. [CrossRef] [PubMed]
Johannessen, W. , Cloyd, J. M. , O’Connell, G. D. , Vresilovic, E. J. , and Elliott, D. M. , 2006, “ Trans-Endplate Nucleotomy Increases Deformation and Creep Response in Axial Loading,” Ann. Biomed. Eng., 34(4), pp. 687–696. [CrossRef] [PubMed]
O’Connell, G. D. , Jacobs, N. T. , Sen, S. , Vresilovic, E. J. , and Elliott, D. M. , 2011, “ Axial Creep Loading and Unloaded Recovery of the Human Intervertebral Disc and the Effect of Degeneration,” J. Mech. Behav. Biomed. Mater., 4(7), pp. 933–942. [CrossRef] [PubMed]
Yingling, V. R. , Callaghan, J. P. , and McGill, S. M. , 1999, “ The Porcine Cervical Spine as a Model of the Human Lumbar Spine: An Anatomical, Geometric, and Functional Comparison,” J. Spinal Disord., 12(5), pp. 415–423. [CrossRef] [PubMed]
Galante, J. O. , 1967, “ Tensile Properties of the Human Lumbar Annulus Fibrosus,” Acta Orthop. Scand., 100(Suppl. 100), pp. 1–91. [CrossRef]
Parkinson, R. J. , Durkin, J. L. , and Callaghan, J. P. , 2005, “ Estimating the Compressive Strength of the Porcine Cervical Spine: An Examination of the Utility of DXA,” Spine, 30(17), pp. E492–E498. [CrossRef] [PubMed]
Callaghan, J. P. , and McGill, S. M. , 2001, “ Intervertebral Disc Herniation: Studies on a Porcine Model Exposed to Highly Repetitive Flexion/Extension Motion With Compressive Force,” Clin. Biomech., 16(1), pp. 28–37. [CrossRef]
Callaghan, J. P. , and McGill, S. M. , 2001, “ Low Back Joint Loading and Kinematics During Standing and Unsupported Sitting,” Ergonomics, 44(3), pp. 280–294. [CrossRef] [PubMed]
Panjabi, M. M. , Andersson, G. B. , Jorneus, L. , Hult, E. , and Mattsson, L. , 1986, “ In Vivo Measurements of Spinal Column Vibrations,” J. Bone Joint Surg. Am., 68(5), pp. 695–702. [PubMed]
Gardner, W. A. , 1992, “ A Unifying View of Coherence in Signal Processing,” Signal Process., 29(2), pp. 113–140. [CrossRef]
Quandieu, P. , and Pellieux, L. , 1982, “ Study In Situ et In Vivo of the Acceleration of Lumbar Vertebrae of a Primate Exposed to Vibration in the Z-Axis,” J. Biomech., 15(12), pp. 985–1006. [CrossRef] [PubMed]
Dunlop, R. B. , Adams, M. A. , and Hutton, W. C. , 1984, “ Disc Space Narrowing and the Lumbar Facet Joints,” J. Bone Joint Surg. Br., 66(5), pp. 706–710. [PubMed]
Hedman, T. P. , and Fernie, G. R. , 1995, “ In Vivo Measurement of Lumbar Spinal Creep in Two Seated Postures Using Magnetic Resonance Imaging,” Spine, 20(2), pp. 178–83. [CrossRef] [PubMed]
Dickey, J. P. , and Kerr, D. J. , 2003, “ Effect of Specimen Length: Are the Mechanics of Individual Motion Segments Comparable in Functional Spinal Units and Multisegment Specimens?,” Med. Eng. Phys., 25(3), pp. 221–227. [CrossRef] [PubMed]
Li, S. , Patwardhan, A. G. , Amirouche, F. M. , Havey, R. , and Meade, K. P. , 1995, “ Limitations of the Standard Linear Solid Model of Intervertebral Discs Subject to Prolonged Loading and Low-Frequency Vibration in Axial Compression,” J. Biomech., 28(7), pp. 779–790. [CrossRef] [PubMed]
Koeller, W. , Meier, W. , and Hartmann, F. , 1986, “ Biomechanical Properties of Human Intervertebral Discs Subjected to Axial Dynamic Compression—Influence of Age and Degeneration,” Spine, 9(7), pp. 725–733. [CrossRef]
McGill, S. M. , and Brown, S. , 1992, “ Creep Response of the Lumbar Spine to Prolonged Full Flexion,” Clin. Biomech., 7(1), pp. 43–46. [CrossRef]


Grahic Jump Location
Fig. 1

The standard linear viscoelastic model

Grahic Jump Location
Fig. 2

Fit of the SLS model to experiment for one specimen in extension

Grahic Jump Location
Fig. 3

Summary of SLS parameter values found for each posture

Grahic Jump Location
Fig. 4

Relaxation times for each posture

Grahic Jump Location
Fig. 5

Height loss versus time for each posture

Grahic Jump Location
Fig. 6

Dynamic stiffness as a function of time and posture. The flexed spine had notably less dynamic stiffness than the other two postures, with no changes with time.

Grahic Jump Location
Fig. 7

Hysteresis across time and posture. The flexed posture showcases significantly more hysteresis than an extended or neutral posture.



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In