0
Research Papers

A Combined Experimental and Computational Approach to Subject-Specific Analysis of Knee Joint Laxity

[+] Author and Article Information
Michael D. Harris

Department of Mechanical
and Materials Engineering,
University of Denver,
2390 S York Street,
Denver, CO 80208
e-mail: michael.d.harris@hotmail.com

Adam J. Cyr

Department of Mechanical
and Materials Engineering,
University of Denver,
2390 S York Street,
Denver, CO 80208;
Department of Mechanical Engineering,
University of Kansas,
3138 Learned Hall,
Lawrence, KS 66045
e-mail: adamjcyrphd@gmail.com

Azhar A. Ali

Department of Mechanical
and Materials Engineering,
University of Denver,
2390 S York Street,
Denver, CO 80208
e-mail: azhar.ali@du.edu

Clare K. Fitzpatrick

Department of Mechanical
and Materials Engineering,
University of Denver,
2390 S York Street,
Denver, CO 80208
e-mail: clare.fitzpatrick@du.edu

Paul J. Rullkoetter

Department of Mechanical
and Materials Engineering,
University of Denver,
2390 S York Street,
Denver, CO 80208
e-mail: paul.rullkoetter@du.edu

Lorin P. Maletsky

Department of Mechanical Engineering,
University of Kansas,
3116 Learned Hall,
Lawrence, KS 66045
e-mail: maletsky@ku.edu

Kevin B. Shelburne

Department of Mechanical
and Materials Engineering,
University of Denver,
2390 S York Street,
Denver, CO 80208
e-mail: kevin.shelburne@du.edu

1Corresponding author.

Manuscript received September 17, 2015; final manuscript received June 3, 2016; published online June 29, 2016. Assoc. Editor: Tammy L. Haut Donahue.

J Biomech Eng 138(8), 081004 (Jun 29, 2016) (8 pages) Paper No: BIO-15-1462; doi: 10.1115/1.4033882 History: Received September 17, 2015; Revised June 03, 2016

Modeling complex knee biomechanics is a continual challenge, which has resulted in many models of varying levels of quality, complexity, and validation. Beyond modeling healthy knees, accurately mimicking pathologic knee mechanics, such as after cruciate rupture or meniscectomy, is difficult. Experimental tests of knee laxity can provide important information about ligament engagement and overall contributions to knee stability for development of subject-specific models to accurately simulate knee motion and loading. Our objective was to provide combined experimental tests and finite-element (FE) models of natural knee laxity that are subject-specific, have one-to-one experiment to model calibration, simulate ligament engagement in agreement with literature, and are adaptable for a variety of biomechanical investigations (e.g., cartilage contact, ligament strain, in vivo kinematics). Calibration involved perturbing ligament stiffness, initial ligament strain, and attachment location until model-predicted kinematics and ligament engagement matched experimental reports. Errors between model-predicted and experimental kinematics averaged <2 deg during varus–valgus (VV) rotations, <6 deg during internal–external (IE) rotations, and <3 mm of translation during anterior–posterior (AP) displacements. Engagement of the individual ligaments agreed with literature descriptions. These results demonstrate the ability of our constraint models to be customized for multiple individuals and simultaneously call attention to the need to verify that ligament engagement is in good general agreement with literature. To facilitate further investigations of subject-specific or population based knee joint biomechanics, data collected during the experimental and modeling phases of this study are available for download by the research community.

FIGURES IN THIS ARTICLE
<>
Copyright © 2016 by ASME
Your Session has timed out. Please sign back in to continue.

References

Beillas, P. , Papaioannou, G. , Tashman, S. , and Yang, K. H. , 2004, “ A New Method to Investigate In Vivo Knee Behavior Using a Finite Element Model of the Lower Limb,” J. Biomech., 37(7), pp. 1019–1030. [CrossRef] [PubMed]
Bendjaballah, M. Z. , Shirazi-Adl, A. , and Zukor, D. J. , 1997, “ Finite Element Analysis of Human Knee Joint in Varus-Valgus,” Clin. Biomech. (Bristol, Avon), 12(3), pp. 139–148. [CrossRef] [PubMed]
Gardiner, J. C. , and Weiss, J. A. , 2003, “ Subject-Specific Finite Element Analysis of the Human Medial Collateral Ligament During Valgus Knee Loading,” J. Orthop. Res., 21(6), pp. 1098–1106. [CrossRef] [PubMed]
Halloran, J. P. , Petrella, A. J. , and Rullkoetter, P. J. , 2005, “ Explicit Finite Element Modeling of Total Knee Replacement Mechanics,” J. Biomech., 38(2), pp. 323–331. [CrossRef] [PubMed]
Blankevoort, L. , and Huiskes, R. , 1996, “ Validation of a Three-Dimensional Model of the Knee,” J. Biomech., 29(7), pp. 955–961. [CrossRef] [PubMed]
Kiapour, A. , Kiapour, A. M. , Kaul, V. , Quatman, C. E. , Wordeman, S. C. , Hewett, T. E. , Demetropoulos, C. K. , and Goel, V . K. , 2014, “ Finite Element Model of the Knee for Investigation of Injury Mechanisms: Development and Validation,” ASME J. Biomech. Eng., 136(1), p. 011002. [CrossRef]
Mootanah, R. , Imhauser, C. W. , Reisse, F. , Carpanen, D. , Walker, R. W. , Koff, M. F. , Lenhoff, M. W. , Rozbruch, S. R. , Fragomen, A. T. , Dewan, Z. , Kirane, Y. M. , Cheah, K. , Dowell, J. K. , and Hillstrom, H. J. , 2014, “ Development and Validation of a Computational Model of the Knee Joint for the Evaluation of Surgical Treatments for Osteoarthritis,” Comput. Methods Biomech. Biomed. Eng., 17(13), pp. 1502–1517. [CrossRef]
Pena, E. , Calvo, B. , Martinez, M. A. , and Doblare, M. , 2006, “ A Three-Dimensional Finite Element Analysis of the Combined Behavior of Ligaments and Menisci in the Healthy Human Knee Joint,” J. Biomech., 39(9), pp. 1686–1701. [CrossRef] [PubMed]
Shelburne, K. B. , Torry, M. R. , and Pandy, M. G. , 2006, “ Contributions of Muscles, Ligaments, and the Ground-Reaction Force to Tibiofemoral Joint Loading During Normal Gait,” J. Orthop. Res., 24(10), pp. 1983–1990. [CrossRef] [PubMed]
Baldwin, M. A. , Clary, C. W. , Fitzpatrick, C. K. , Deacy, J. S. , Maletsky, L. P. , and Rullkoetter, P. J. , 2012, “ Dynamic Finite Element Knee Simulation for Evaluation of Knee Replacement Mechanics,” J. Biomech., 45(3), pp. 474–483. [CrossRef] [PubMed]
Yang, Z. , Wickwire, A. C. , and Debski, R. E. , 2010, “ Development of a Subject-Specific Model to Predict the Forces in the Knee Ligaments at High Flexion Angles,” Med. Biol. Eng. Comput., 48(11), pp. 1077–1085. [CrossRef] [PubMed]
Blankevoort, L. , Huiskes, R. , and de Lange, A. , 1988, “ The Envelope of Passive Knee Joint Motion,” J. Biomech., 21(9), pp. 705–720. [CrossRef] [PubMed]
Cyr, A. J. , Shalhoub, S. S. , Fitzwater, F. G. , Ferris, L. A. , and Maletsky, L. P. , 2015, “ Mapping of Contributions From Collateral Ligaments to Overall Knee Joint Constraint: An Experimental Cadaveric Study,” ASME J. Biomech. Eng., 137(6), p. 061006. [CrossRef]
Hughston, J. C. , Andrews, J. R. , Cross, M. J. , and Moschi, A. , 1976, “ Classification of Knee Ligament Instabilities. Part I. The Medial Compartment and Cruciate Ligaments,” J. Bone Jt. Surg. Am., 58(2), pp. 159–172.
Robinson, J. R. , Bull, A. M. , Thomas, R. R. , and Amis, A. A. , 2006, “ The Role of the Medial Collateral Ligament and Posteromedial Capsule in Controlling Knee Laxity,” Am. J. Sports Med., 34(11), pp. 1815–1823. [CrossRef] [PubMed]
Seering, W. P. , Piziali, R. L. , Nagel, D. A. , and Schurman, D. J. , 1980, “ The Function of the Primary Ligaments of the Knee in Varus-Valgus and Axial Rotation,” J. Biomech., 13(9), pp. 785–794. [CrossRef] [PubMed]
Cyr, A. J. , and Maletsky, L. P. , 2015, “ Technical Note: A Multi-Dimensional Description of Knee Laxity Using Radial Basis Functions,” Comput. Methods Biomech. Biomed. Eng., 18(15), pp. 1674–1679. [CrossRef]
Grood, E. S. , and Suntay, W. J. , 1983, “ A Joint Coordinate System for the Clinical Description of Three-Dimensional Motions: Application to the Knee,” ASME J. Biomech. Eng., 105(2), pp. 136–144. [CrossRef]
Baldwin, M. A. , Laz, P. J. , Stowe, J. Q. , and Rullkoetter, P. J. , 2009, “ Efficient Probabilistic Representation of Tibiofemoral Soft Tissue Constraint,” Comput. Methods Biomech. Biomed. Eng., 12(6), pp. 651–659. [CrossRef]
Fischer, R. A. , Arms, S. W. , Johnson, R. J. , and Pope, M. H. , 1985, “ The Functional Relationship of the Posterior Oblique Ligament to the Medial Collateral Ligament of the Human Knee,” Am. J. Sports Med., 13(6), pp. 390–397. [CrossRef] [PubMed]
Hughston, J. C. , and Eilers, A. F. , 1973, “ The Role of the Posterior Oblique Ligament in Repairs of Acute Medial (Collateral) Ligament Tears of the Knee,” J. Bone Jt. Surg. Am., 55(5), pp. 923–940.
LaPrade, R. F. , Tso, A. , and Wentorf, F. A. , 2004, “ Force Measurements on the Fibular Collateral Ligament, Popliteofibular Ligament, and Popliteus Tendon to Applied Loads,” Am. J. Sports Med., 32(7), pp. 1695–1701. [CrossRef] [PubMed]
Lim, H. C. , Bae, J. H. , Bae, T. S. , Moon, B. C. , Shyam, A. K. , and Wang, J. H. , 2012, “ Relative Role Changing of Lateral Collateral Ligament on the Posterolateral Rotatory Instability According to the Knee Flexion Angles: A Biomechanical Comparative Study of Role of Lateral Collateral Ligament and Popliteofibular Ligament,” Arch. Orthop. Trauma Surg., 132(11), pp. 1631–1636. [CrossRef] [PubMed]
Maynard, M. J. , Deng, X. , Wickiewicz, T. L. , and Warren, R. F. , 1996, “ The Popliteofibular Ligament. Rediscovery of a Key Element in Posterolateral Stability,” Am. J. Sports Med., 24(3), pp. 311–316. [CrossRef] [PubMed]
Shahane, S. A. , Ibbotson, C. , Strachan, R. , and Bickerstaff, D. R. , 1999, “ The Popliteofibular Ligament. An Anatomical Study of the Posterolateral Corner of the Knee,” J. Bone Jt. Surg. Br., 81(4), pp. 636–642. [CrossRef]
Ishigooka, H. , Sugihara, T. , Shimizu, K. , Aoki, H. , and Hirata, K. , 2004, “ Anatomical Study of the Popliteofibular Ligament and Surrounding Structures,” J. Orthop. Sci., 9(1), pp. 51–58. [CrossRef] [PubMed]
Claes, S. , Vereecke, E. , Maes, M. , Victor, J. , Verdonk, P. , and Bellemans, J. , 2013, “ Anatomy of the Anterolateral Ligament of the Knee,” J. Anat., 223(4), pp. 321–328. [CrossRef] [PubMed]
Vincent, J. P. , Magnussen, R. A. , Gezmez, F. , Uguen, A. , Jacobi, M. , Weppe, F. , Al-Saati, M. F. , Lustig, S. , Demey, G. , Servien, E. , and Neyret, P. , 2012, “ The Anterolateral Ligament of the Human Knee: An Anatomic and Histologic Study,” Knee Surg. Sports Traumatol. Arthroscopy, 20(1), pp. 147–152. [CrossRef]
Arms, S. , Boyle, J. , Johnson, R. , and Pope, M. , 1983, “ Strain Measurement in the Medial Collateral Ligament of the Human Knee: An Autopsy Study,” J. Biomech., 16(7), pp. 491–496. [CrossRef] [PubMed]
Griffith, C. J. , Wijdicks, C. A. , LaPrade, R. F. , Armitage, B. M. , Johansen, S. , and Engebretsen, L. , 2009, “ Force Measurements on the Posterior Oblique Ligament and Superficial Medial Collateral Ligament Proximal and Distal Divisions to Applied Loads,” Am. J. Sports Med., 37(1), pp. 140–148. [CrossRef] [PubMed]
Mommersteeg, T. J. , Huiskes, R. , Blankevoort, L. , Kooloos, J. G. , Kauer, J. M. , and Maathuis, P. G. , 1996, “ A Global Verification Study of a Quasi-Static Knee Model With Multi-Bundle Ligaments,” J. Biomech., 29(12), pp. 1659–1664. [CrossRef] [PubMed]
Blankevoort, L. , Huiskes, R. , and de Lange, A. , 1991, “ Recruitment of Knee Joint Ligaments,” ASME J. Biomech. Eng., 113(1), pp. 94–103. [CrossRef]
Haimes, J. L. , Wroble, R. R. , Grood, E. S. , and Noyes, F. R. , 1994, “ Role of the Medial Structures in the Intact and Anterior Cruciate Ligament-Deficient Knee. Limits of Motion in the Human Knee,” Am. J. Sports Med., 22(3), pp. 402–409. [CrossRef] [PubMed]
Robinson, J. R. , Sanchez-Ballester, J. , Bull, A. M. , Thomas Rde, W. , and Amis, A. A. , 2004, “ The Posteromedial Corner Revisited. An Anatomical Description of the Passive Restraining Structures of the Medial Aspect of the Human Knee,” J. Bone Jt. Surg. Br., 86(5), pp. 674–681. [CrossRef]
Bach, J. M. , Hull, M. L. , and Patterson, H. A. , 1997, “ Direct Measurement of Strain in the Posterolateral Bundle of the Anterior Cruciate Ligament,” J. Biomech., 30(3), pp. 281–283. [CrossRef] [PubMed]
Markolf, K. L. , Feeley, B. T. , Tejwani, S. G. , Martin, D. E. , and McAllister, D. R. , 2006, “ Changes in Knee Laxity and Ligament Force After Sectioning the Posteromedial Bundle of the Posterior Cruciate Ligament,” Arthroscopy, 22(10), pp. 1100–1106. [CrossRef] [PubMed]
Ali, A. A. , Shalhoub, S. S. , Cyr, A. J. , Fitzpatrick, C. K. , Maletsky, L. P. , Rullkoetter, P. J. , and Shelburne, K. B. , 2016, “ Validation of Predicted Patellofemoral Mechanics in a Finite Element Model of the Healthy and Cruciate-Deficient Knee,” J. Biomech., 49(2), pp. 302–309. [CrossRef] [PubMed]
Weiss, J. A. , and Gardiner, J. C. , 2001, “ Computational Modeling of Ligament Mechanics,” Crit. Rev. Biomed. Eng., 29(3), pp. 303–371. [CrossRef] [PubMed]
Weiss, J. A. , Gardiner, J. C. , Ellis, B. J. , Lujan, T. J. , and Phatak, N. S. , 2005, “ Three-Dimensional Finite Element Modeling of Ligaments: Technical Aspects,” Med. Eng. Phys., 27(10), pp. 845–861. [CrossRef] [PubMed]

Figures

Grahic Jump Location
Fig. 1

Experimental setup for laxity testing. Each leg was inverted, with the femur rigidly mounted to a base and a 6DOF load cell attached to the distal tibia. Optotrak arrays tracked segment motion while torques and displacements were manually applied.

Grahic Jump Location
Fig. 2

Medial (left) and lateral (right) views of FE model from one knee. Yellow dots indicate digitized points taken during the experiments to identify attachment locations for the LCL, MCL, ACL, and PCL. Other ligaments were placed based on anatomical descriptions.

Grahic Jump Location
Fig. 3

Experimental and FE model torque versus displacement curves at 30 deg flexion for the resected (top) and intact (bottom) cases. Positive torque or force values and positively directed rotation and displacement values represent valgus, external, and anterior.

Grahic Jump Location
Fig. 4

Engagement of ligaments contributing to resistance of tibia motion during (a) varus, (b) valgus, (c) internal, (d) external, (e) anterior, and (f) posterior tests for the intact state. Forces represented are the average and standard deviation forces for all knees at the end of the applied 10 N·m for VV or 8 N·m for IE torque tests. For AP tests, not all knees reached 80 N during experimental testing; shown here are averages at applied forces of 50 N for anterior and 80 N for posterior.

Grahic Jump Location
Fig. 5

Representation of force within ligaments engaged during external rotation at 0 deg flexion (left) compared to 45 deg flexion (right). Arrow sizes indicate ligament forces in the four. Major contributors during external rotation were the PFL and MCL. The MCLA of knee 04, particularly, became increasingly engaged as flexion increased.

Tables

Errata

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In