Research Papers

Biomechanical Behaviors in Three Types of Spinal Cord Injury Mechanisms

[+] Author and Article Information
Batbayar Khuyagbaatar

Department of Mechanical Engineering,
Kyung Hee University,
1 Seocheon-dong,
Yongin-si, Gyeonggi-do 446-701, Korea
e-mail: bayaraa_3d@yahoo.com

Kyungsoo Kim

Department of Applied Mathematics,
Kyung Hee University,
1 Seocheon-dong,
Yongin-si, Gyeonggi-do 446-701, Korea
e-mail: kyungsoo@khu.ac.kr

Won Man Park

Department of Mechanical Engineering,
Kyung Hee University,
1 Seocheon-dong,
Yongin-si, Gyeonggi-do 446-701, Korea
e-mail: muhaguy@hanmail.net

Yoon Hyuk Kim

Department of Mechanical Engineering,
Kyung Hee University,
1 Seocheon-dong,
Yongin-si, Gyeonggi-do 446-701, Korea
e-mail: yoonhkim@khu.ac.kr

1Corresponding author.

Manuscript received August 3, 2015; final manuscript received June 1, 2016; published online June 22, 2016. Assoc. Editor: Brian D. Stemper.

J Biomech Eng 138(8), 081003 (Jun 22, 2016) (7 pages) Paper No: BIO-15-1385; doi: 10.1115/1.4033794 History: Received August 03, 2015; Revised June 01, 2016

Clinically, spinal cord injuries (SCIs) are radiographically evaluated and diagnosed from plain radiographs, computed tomography (CT), and magnetic resonance imaging. However, it is difficult to conclude that radiographic evaluation of SCI can directly explain the fundamental mechanism of spinal cord damage. The von-Mises stress and maximum principal strain are directly associated with neurological damage in the spinal cord from a biomechanical viewpoint. In this study, the von-Mises stress and maximum principal strain in the spinal cord as well as the cord cross-sectional area (CSA) were analyzed under various magnitudes for contusion, dislocation, and distraction SCI mechanisms, using a finite-element (FE) model of the cervical spine with spinal cord including white matter, gray matter, dura mater with nerve roots, and cerebrospinal fluid (CSF). A regression analysis was performed to find correlation between peak von-Mises stress/peak maximum principal strain at the cross section of the highest reduction in CSA and corresponding reduction in CSA of the cord. Dislocation and contusion showed greater peak stress and strain values in the cord than distraction. The substantial increases in von-Mises stress as well as CSA reduction similar to or more than 30% were produced at a 60% contusion and a 60% dislocation, while the maximum principal strain was gradually increased as injury severity elevated. In addition, the CSA reduction had a strong correlation with peak von-Mises stress/peak maximum principal strain for the three injury mechanisms, which might be fundamental information in elucidating the relationship between radiographic and mechanical parameters related to SCI.

Copyright © 2016 by ASME
Your Session has timed out. Please sign back in to continue.


Sekhon, L. H. , and Fehlings, M. G. , 2001, “ Epidemiology, Demographics, and Pathophysiology of Acute Spinal Cord Injury,” Spine, 26(24 Suppl.), pp. S2–S12. [CrossRef] [PubMed]
Maiman, D. J. , Myklebust, J. B. , Ho, K. C. , and Coats, J. , 1989, “ Experimental Spinal Cord Injury Produced by Axial Tension,” J. Spinal Disord., 2(1), pp. 6–13. [PubMed]
Dumont, R. J. , Okonkwo, D. O. , Verma, S. , Hurlbert, R. J. , Boulos, P. T. , Ellegala, D. B. , and Dumont, A. S. , 2001, “ Acute Spinal Cord Injury, Part I: Pathophysiologic Mechanisms,” Clin. Neuropharmacol., 24(5), pp. 254–264. [CrossRef] [PubMed]
Choo, A. M. , Liu, J. , Lam, C. K. , Dvorak, M. , Tetzlaff, W. , and Oxland, T. R. , 2007, “ Contusion, Dislocation, and Distraction: Primary Hemorrhage and Membrane Permeability in Distinct Mechanisms of Spinal Cord Injury,” J. Neurosurg. Spine, 6(3), pp. 255–266. [CrossRef] [PubMed]
Clarke, E. C. , Choo, A. M. , Liu, J. , Lam, C. K. , Bilston, L. E. , Tetzlaff, W. , and Oxland, T. R. , 2008, “ Anterior Fracture-Dislocation is More Severe Than Lateral: A Biomechanical and Neuropathological Comparison in Rat Thoracolumbar Spine,” J. Neurotrauma, 25(4), pp. 371–383. [CrossRef] [PubMed]
Fiford, R. J. , Bilston, L. E. , Waite, P. , and Lu, J. , 2004, “ A Vertebral Dislocation Model of Spinal Cord Injury in Rats,” J. Neurotrauma, 21(4), pp. 451–458. [CrossRef] [PubMed]
Bono, C. M. , Vaccaro, A. R. , Fehlings, M. , Fisher, C. , Dvorak, M. , Ludwig, S. , and Harrop, J. , 2006, “ Measurement Techniques for Lower Cervical Spine Injuries: Consensus Statement of the Spine Trauma Study Group,” Spine, 31(5), pp. 603–609. [CrossRef] [PubMed]
Song, K. J. , Choi, B. W. , Kim, S. J. , Kim, G. H. , Kim, Y. S. , and Song, J. H. , 2009, “ The Relationship Between Spinal Stenosis and Neurological Outcome in Traumatic Cervical Spine Injury: An Analysis Using Pavlov's Ratio, Spinal Cord Area, and Spinal Canal Area,” Clin. Orthop. Surg., 1(1), pp. 11–18. [CrossRef] [PubMed]
Penning, L. , Wilmink, J. T. , van Woerden, H. H. , and Knol, E. , 1986, “ CT Myelographic Findings in Degenerative Disorders of the Cervical Spine: Clinical Significance,” Am. J. Roentgenol., 146(4), pp. 793–801. [CrossRef]
Stevens, J. M. , 1995, “ Imaging of the Spinal Cord,” J. Neurol., Neurosurg. Psychiatry, 58(4), pp. 403–416. [CrossRef]
Fehlings, M. G. , and Skaf, G. , 1998, “ A Review of the Pathophysiology of Cervical Spondylotic Myelopathy With Insights for Potential Novel Mechanisms Drawn From Traumatic Spinal Cord Injury,” Spine, 23(24), pp. 2730–2737. [CrossRef] [PubMed]
Kameyama, T. , Hashizume, Y. , Ando, T. , Takahashi, A. , Yanagi, T. , and Mizuno, J. , 1995, “ Spinal Cord Morphology and Pathology in Ossification of the Posterior Longitudinal Ligament,” Brain, 118(Pt 1), pp. 263–278. [CrossRef] [PubMed]
Okada, Y. , Ikada, T. , Yamada, H. , Sakamoto, R. , and Katoh, S. , 1993, “ Magnetic Resonance Imaging Study on the Results of Surgery for Cervical Compression Myelopathy,” Spine, 18(14), pp. 2024–2029. [CrossRef] [PubMed]
Bain, A. C. , and Meaney, D. F. , 2000, “ Tissue-Level Thresholds for Axonal Damage in an Experimental Model of Central Nervous System White Matter Injury,” ASME J. Biomech. Eng., 122(6), pp. 615–622. [CrossRef]
Maikos, J. T. , Qian, Z. , Metaxas, D. , and Shreiber, D. I. , 2008, “ Finite Element Analysis of Spinal Cord Injury in the Rat,” J. Neurotrauma, 25(7), pp. 795–816. [CrossRef] [PubMed]
Russell, C. M. , Choo, A. M. , Tetzlaff, W. , Chung, T. E. , and Oxland, T. R. , 2012, “ Maximum Principal Strain Correlates With Spinal Cord Tissue Damage in Contusion and Dislocation Injuries in the Rat Cervical Spine,” J. Neurotrauma, 29(8), pp. 1574–1585. [CrossRef] [PubMed]
Ouyang, H. , Galle, B. , Li, J. , Nauman, E. , and Shi, R. , 2008, “ Biomechanics of Spinal Cord Injury: A Multimodal Investigation Using Ex Vivo Guinea Pig Spinal Cord White Matter,” J. Neurotrauma, 25(1), pp. 19–29. [CrossRef] [PubMed]
Li, X. F. , and Dai, L. Y. , 2009, “ Three-Dimensional Finite Element Model of the Cervical Spinal Cord: Preliminary Results of Injury Mechanism Analysis,” Spine, 34(11), pp. 1140–1147. [CrossRef] [PubMed]
Persson, C. , Summers, J. , and Hall, R. M. , 2011, “ The Importance of Fluid-Structure Interaction in Spinal Trauma Models,” J. Neurotrauma, 28(1), pp. 113–125. [CrossRef] [PubMed]
Khuyagbaatar, B. , Kim, K. , and Kim, Y. H. , 2014, “ Effects of Bone Fragment Impact on Biomechanical Parameters Related to Spinal Cord Injury: A Finite Element Study,” J. Biomech., 47(11), pp. 2820–2825 [CrossRef] [PubMed]
Greaves, C. Y. , Gadala, M. S. , and Oxland, T. R. , 2008, “ A Three-Dimensional Finite Element Model of the Cervical Spine With Spinal Cord: An Investigation of Three Injury Mechanisms,” Ann. Biomed. Eng., 36(3), pp. 396–405. [CrossRef] [PubMed]
Lee, S. H. , Im, Y. J. , Kim, K. T. , Kim, Y. H. , Park, W. M. , and Kim, K. , 2011, “ Comparison of Cervical Spine Biomechanics After Fixed- and Mobile-Core Artificial Disc Replacement: A Finite Element Analysis,” Spine, 36(9), pp. 700–708. [CrossRef] [PubMed]
Ko, H. Y. , Park, J. H. , and Baek, S. Y. , 2004, “ Gross Quantitative Measurements of Spinal Cord Segments in Human,” Spinal Cord, 42(1), pp. 35–40. [CrossRef] [PubMed]
Kameyama, T. , Hashizume, Y. , and Sobeu, G. , 1996, “ Morphologic Features of the Normal Human Cadaveric Spinal Cord,” Spine, 21(11), pp. 1285–1290. [CrossRef] [PubMed]
Holsheimer, J. , den Boer, J. A. , Struijk, J. J. , and Rozeboom, A. R. , 1994, “ MR Assessment of the Normal Position of the Spinal Cord in the Spinal Canal,” Am. J. Neuroradiol., 15(5), pp. 951–959.
Ichihara, K. , Taguchi, T. , Shimada, Y. , Sakuramoto, I. , Kawano, S. , and Kawai, S. , 2001, “ Gray Matter of the Bovine Cervical Spinal Cord is Mechanically More Rigid and Fragile Than the White Matter,” J. Neurotrauma, 18(3), pp. 361–367. [CrossRef] [PubMed]
Ogden, R. W. , 1972, “ Large Deformation Isotropic Elasticity: On the Correlation of Theory and Experiment for Incompressible Rubberlike Solids,” Proc. R. Soc. London A, 326(1567), pp. 565–584. [CrossRef]
Persson, C. , Evans, S. , Marsh, R. , Summers, J. L. , and Hall, R. M. , 2010, “ Poisson's Ratio and Strain Rate Dependency of the Constitutive Behavior of Spinal Dura Mater,” Ann. Biomed. Eng., 38(3), pp. 975–983. [CrossRef] [PubMed]
Brydon, H. L. , Hayward, R. , Harkness, W. , and Bayston, R. , 1995, “ Physical Properties of Cerebrospinal Fluid of Relevance to Shunt Function 1: The Effect of Protein Upon CSF Viscosity,” Br. J. Neurosurg., 9(5), pp. 639–644. [CrossRef] [PubMed]
Bloomfield, I. G. , Johnston, I. H. , and Bilston, L. E. , 1998, “ Effects of Proteins, Blood Cells and Glucose on the Viscosity of Cerebrospinal Fluid,” Pediatr. Neurosurg., 28(5), pp. 246–251. [CrossRef] [PubMed]
Wilcox, R. K. , Boerger, T. O. , Allen, D. J. , Barton, D. C. , Limb, D. , Dickson, R. A. , and Hall, R. M. , 2003, “ A Dynamic Study of Thoracolumbar Burst Fracture,” J. Bone Jt. Surg. Am. 85(11), pp. 2184–2189.
Jones, C. F. , Kroeker, S. G. , Cripton, P. A. , and Hall, R. M. , 2008, “ The Effect of Cerebrospinal Fluid on the Biomechanics of Spinal Cord: An Ex Vivo Bovine Model Using Bovine and Physical Surrogate Spinal Cord,” Spine, 33(17), pp. E580–E588. [CrossRef] [PubMed]
Persson, C. , McLure, S. W. , Summers, J. , and Hall, R. M. , 2009, “ The Effect of Bone Fragment Size and Cerebrospinal Fluid on Spinal Cord Deformation During Trauma: An Ex Vivo Study,” J. Neurosurg. Spine, 10(4), pp. 315–323. [CrossRef] [PubMed]
Wilcox, R. K. , Allen, D. J. , Hall, R. M. , Limb, D. , Barton, D. C. , and Dickson, R. A. , 2004, “ A Dynamic Investigation of the Burst Fracture Process Using a Combined Experimental and Finite Element Approach,” Eur. Spine J., 13(6), pp. 481–488. [CrossRef] [PubMed]
Meves, R. , and Avanzi, O. , 2006, “ Correlation Among Canal Compromise, Neurologic, Deficit, and Injury Severity in Thoracolumbar Burst Fractures,” Spine, 31(18), pp. 2137–2141. [CrossRef] [PubMed]
Aebli, N. , Rüegg, T. B. , Wicki, A. G. , Petrou, N. , and Krebs, J. , 2013, “ Predicting the Risk and Severity of Acute Spinal Cord Injury After a Minor Trauma to the Cervical Spine,” Spine J., 13(6), pp. 597–604. [CrossRef] [PubMed]
Ngo, L. M. , Aizawa, T. , Hoshikawa, T. , Tanaka, Y. , Sato, T. , Ishii, Y. , and Kokubun, S. , 2012, “ Fracture and Contralateral Dislocation of the Twin Facet Joints of the Lower Cervical Spine,” Eur. Spine J., 21(2), pp. 282–288. [CrossRef] [PubMed]
Yliniemi, E. M. , Pellettiere, J. A. , Doczy, E. J. , Nuckley, D. J. , Perry, C. E. , and Ching, R. P. , 2009, “ Dynamic Tensile Failure Mechanics of the Musculoskeletal Neck Using a Cadaver Model,” ASME J. Biomech. Eng., 131(5), p. 051001. [CrossRef]
Kroeker, S. G. , and Ching, R. P. , 2013, “ Coupling Between the Spinal Cord and Cervical Vertebral Column Under Tensile Loading,” J. Biomech., 46(4), pp. 773–779. [CrossRef] [PubMed]
Choo, A. M. , Liu, J. , Liu, Z. , Dvorak, M. , Tetzlaff, W. , and Oxland, T. R. , 2009, “ Modeling Spinal Cord Contusion, Dislocation, and Distraction: Characterization of Vertebral Clamps, Injury Severities, and Node of Ranvier Deformations,” J. Neurosci. Methods, 181(1), pp. 6–17. [CrossRef] [PubMed]
Vaccaro, A. R. , Hulbert, J. , Patel, A. A. , Fisher, C. , Dvorak, M. , Lehman, R. A., Jr. , Anderson, P. , Harrop, J. , Oner, F. C. , Arnold, P. , Fehlings, M. , Hedlund, R. , Madrazo, I. , Rechtine, G. , Aarabi, B. , Shainline, M. , and Spine Trauma Study Group, 2007, “ The Subaxial Cervical Spine Injury Classification System: A Novel Approach to Recognize the Importance of Morphology, Neurology, and Integrity of the Disco-Ligamentous Complex,” Spine, 32(21), pp. 2365–2374. [CrossRef] [PubMed]
Persson, C. , Summers, J. , and Hall, R. M. , 2011, “ The Effect of Cerebrospinal Fluid Thickness on Traumatic Spinal Cord Deformation,” J. Appl. Biomech., 27(4), pp. 330–335. [PubMed]
Hung, T. K. , and Chang, G. L. , 1981, “ Biomechanical and Neurological Response of the Spinal Cord of a Puppy to Uniaxial Tension,” ASME J. Biomech. Eng., 103(1), pp. 43–47. [CrossRef]
Kim, Y. H. , Khuyagbaatar, B. , and Kim, K. , 2013, “ Biomechanical Effects of Spinal Cord Compression Due to Ossification of Posterior Longitudinal Ligament and Ligamentum Flavum: A Finite Element Analysis,” Med. Eng. Phys., 35(9), pp. 1266–1271. [CrossRef] [PubMed]
Kato, Y. , Kanchiku, T. , Imajo, Y. , Kimura, K. , Ichihara, K. , Kawano, S. , Hamanaka, D. , Yaji, K. , and Taguchi, T. , 2010, “ Biomechanical Study of the Effect of Degree of Static Compression of the Spinal Cord in Ossification of the Posterior Longitudinal Ligament,” J. Neurosurg. Spine, 12(3), pp. 301–305. [CrossRef] [PubMed]
Nishida, N. , Kato, Y. , Imajo, Y. , Kawano, S. , and Taguchi, T. , 2011, “ Biomechanical Study of the Spinal Cord in Thoracic Ossification of the Posterior Longitudinal Ligament,” J. Spinal Cord Med., 34(5), pp. 518–522. [CrossRef] [PubMed]
Galle, B. , Ouyang, H. , Shi, R. , and Nauman, E. , 2010, “ A Transversely Isotropic Constitutive Model of Excised Guinea Pig Spinal Cord White Matter,” J. Biomech., 43(14), pp. 2839–2843. [CrossRef] [PubMed]
Sparrey, C. J. , and Keaveny, T. M. , 2011, “ Compression Behavior of Porcine Spinal Cord White Matter,” J. Biomech., 44(6), pp. 1078–1082. [CrossRef] [PubMed]


Grahic Jump Location
Fig. 1

The FE model of the cervical spine with the spinal cord: (a) axial view (b) and sagittal view. The cervical spine components, including vertebrae and intervertebral disks, were modeled as rigid bodies.

Grahic Jump Location
Fig. 2

FE models for (a) contusion injury, (b) dislocation injury, and (c) distraction injury

Grahic Jump Location
Fig. 3

(a) Comparison of maximum percentage compression of the whole spinal cord and the cord within the dural sheath for our FE results and previous experimental studies [32,33] and (b) comparison of time to maximum compression of the whole spinal cord between our FE results and a previous experimental study [33]. Thepellets have same mass and different impact areas (pellet 1: 314 mm2; pellet 2: 157 mm2; and pellet 3:78.5mm2).

Grahic Jump Location
Fig. 4

(a) von-Mises stress in the cord for a 60% spinal canal reduction in contusion, a 60% anterior displacement in dislocation, and a 15 mm inferior displacement in distraction; (b) maximum principal strain in the cord for a 60% of spinal canal reduction in contusion, a 60% anterior displacement in dislocation, and a 15 mm inferior displacement in distraction. The “A” arrow indicates the anterior direction, while the “P” arrow indicates the posterior direction.

Grahic Jump Location
Fig. 5

(a) Maximum stress in the cord, (b) maximum principal strain in the cord, and (c) reduction in the cord CSA for each injury mechanisms

Grahic Jump Location
Fig. 6

Scatterplots of stress and strain versus reduction in CSA in all injury mechanisms



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In