Research Papers

Modeling the Human Tibiofemoral Joint Using Ex Vivo Determined Compliance Matrices

[+] Author and Article Information
Giuliano Lamberto

Department of Movement,
Human, and Health Sciences,
Università degli Studi di Roma—Foro Italico,
Piazza Lauro de Bosis 6,
Rome 00194, Italy;
Department of Mechanical Engineering,
INSIGNEO Institute for In Silico Medicine,
University of Sheffield,
Mappin Street,
Sheffield S1 3JD, UK
e-mail: glamberto1@sheffied.ac.uk

Vincent Richard

University of Lyon,
Université Claude Bernard Lyon 1,
Lyon F69622, France
e-mail: vincent.richard@univ-lyon1.fr

Raphaël Dumas

University of Lyon,
Université Claude Bernard Lyon 1,
Lyon F69622, France
e-mail: raphael.dumas@ifsttar.fr

Pier Paolo Valentini

Department of Enterprise Engineering
“Mario Lucertini,”
Università degli Studi di Roma—Tor Vergata,
Via del Politecnico 1,
Rome 00133, Italy
e-mail: valentini@ing.uniroma2.it

Ettore Pennestrì

Department of Enterprise Engineering
“Mario Lucertini,”
Università degli Studi di Roma—Tor Vergata,
Via del Politecnico 1,
Rome 00133, Italy
e-mail: pennestri@mec.uniroma2.it

Tung-Wu Lu

Institute of Biomedical Engineering
and Department of Orthopaedic Surgery,
National Taiwan University,
No. 1, Section 4, Roosevelt Road,
Taipei 106, Taiwan
e-mail: twlu@ntu.edu.tw

Valentina Camomilla

Department of Movement,
Human, and Health Sciences,
Università degli Studi di Roma—Foro Italico,
Piazza Lauro de Bosis 6,
Rome 00194, Italy
e-mail: valentina.camomilla@uniroma4.it

Aurelio Cappozzo

Department of Movement,
Human, and Health Sciences,
Università degli Studi di Roma—Foro Italico,
Piazza Lauro de Bosis 6,
Rome 00194, Italy
e-mail: aurelio.cappozzo@uniroma4.it

1Corresponding author.

Manuscript received October 8, 2015; final manuscript received April 15, 2016; published online May 11, 2016. Assoc. Editor: Kenneth Fischer.

J Biomech Eng 138(6), 061010 (May 11, 2016) (8 pages) Paper No: BIO-15-1499; doi: 10.1115/1.4033480 History: Received October 08, 2015; Revised April 15, 2016

Several approaches have been used to devise a model of the human tibiofemoral joint for embedment in lower limb musculoskeletal models. However, no study has considered the use of cadaveric 6 × 6 compliance (or stiffness) matrices to model the tibiofemoral joint under normal or pathological conditions. The aim of this paper is to present a method to determine the compliance matrix of an ex vivo tibiofemoral joint for any given equilibrium pose. Experiments were carried out on a single ex vivo knee, first intact and, then, with the anterior cruciate ligament (ACL) transected. Controlled linear and angular displacements were imposed in single degree-of-freedom (DoF) tests to the specimen, and the resulting forces and moments were measured using an instrumented robotic arm. This was done starting from seven equilibrium poses characterized by the following flexion angles: 0 deg, 15 deg, 30 deg, 45 deg, 60 deg, 75 deg, and 90 deg. A compliance matrix for each of the selected equilibrium poses and for both the intact and ACL-deficient specimen was calculated. The matrix, embedding the experimental load–displacement relationship of the examined DoFs, was calculated using a linear least squares inversion based on a QR decomposition, assuming symmetric and positive-defined matrices. Single compliance matrix terms were in agreement with the literature. Results showed an overall increase of the compliance matrix terms due to the ACL transection (2.6 ratio for rotational terms at full extension) confirming its role in the joint stabilization. Validation experiments were carried out by performing a Lachman test (the tibia is pulled forward) under load control on both the intact and ACL-deficient knee and assessing the difference (error) between measured linear and angular displacements and those estimated using the appropriate compliance matrix. This error increased nonlinearly with respect to the values of the load. In particular, when an incremental posterior–anterior force up to 6 N was applied to the tibia of the intact specimen, the errors on the estimated linear and angular displacements were up to 0.6 mm and 1.5 deg, while for a force up to 18 N, the errors were 1.5 mm and 10.5 deg, respectively. In conclusion, the method used in this study may be a viable alternative to characterize the tibiofemoral load-dependent behavior in several applications.

Copyright © 2016 by ASME
Your Session has timed out. Please sign back in to continue.


Yamaguchi, G. T. , and Zajac, F. E. , 1989, “ A Planar Model of the Knee Joint to Characterize the Knee Extensor Mechanism,” J. Biomech., 22(1), pp. 1–10. [CrossRef] [PubMed]
Beynnon, B. , Yu, J. , Huston, D. , Fleming, B. , Johnson, R. , Haugh, L. , and Pope, M. H. , 1996, “ A Sagittal Plane Model of the Knee and Cruciate Ligaments With Application of a Sensitivity Analysis,” ASME J. Biomech. Eng., 118(2), pp. 227–239. [CrossRef]
Hu, C.-C. , Lu, T.-W. , and Chen, S.-C. , 2013, “ Influence of Model Complexity and Problem Formulation on the Forces in the Knee Calculated Using Optimization Methods,” Biomed. Eng. OnLine, 12(1), p. 20. [CrossRef] [PubMed]
Fernandez, J. W. , and Pandy, M. G. , 2006, “ Integrating Modelling and Experiments to Assess Dynamic Musculoskeletal Function in Humans,” Exp. Physiol., 91(2), pp. 371–382. [CrossRef] [PubMed]
Yang, N. H. , Canavan, P. K. , Nayeb-Hashemi, H. , Najafi, B. , and Vaziri, A. , 2010, “ Protocol for Constructing Subject-Specific Biomechanical Models of Knee Joint,” Comput. Methods Biomech. Biomed. Eng., 13(5), pp. 589–603. [CrossRef]
Halloran, J. P. , Petrella, A. J. , and Rullkoetter, P. J. , 2005, “ Explicit Finite Element Modeling of Total Knee Replacement Mechanics,” J. Biomech., 38(2), pp. 323–331. [CrossRef] [PubMed]
Ribeiro, A. , Rasmussen, J. , Flores, P. , and Silva, L. F. , 2012, “ Modeling of the Condyle Elements Within a Biomechanical Knee Model,” Multibody Syst. Dyn., 28(1–2), pp. 181–197. [CrossRef]
Arnold, E. M. , Ward, S. R. , Lieber, R. L. , and Delp, S. L. , 2010, “ A Model of the Lower Limb for Analysis of Human Movement,” Ann. Biomed. Eng., 38(2), pp. 269–279. [CrossRef] [PubMed]
Sancisi, N. , and Parenti-Castelli, V. , 2011, “ A Sequentially-Defined Stiffness Model of the Knee,” Mech. Mach. Theory, 46(12), pp. 1920–1928. [CrossRef]
Baldwin, M. A. , Clary, C. W. , Fitzpatrick, C. K. , Deacy, J. S. , Maletsky, L. P. , and Rullkoetter, P. J. , 2012, “ Dynamic Finite Element Knee Simulation for Evaluation of Knee Replacement Mechanics,” J. Biomech., 45(3), pp. 474–483. [CrossRef] [PubMed]
Shelburne, K. B. , Torry, M. R. , and Pandy, M. G. , 2005, “ Muscle, Ligament, and Joint-Contact Forces at the Knee During Walking,” Med. Sci. Sports Exercise, 37(11), pp. 1948–1956. [CrossRef]
Moissenet, F. , Chèze, L. , and Dumas, R. , 2014, “ A 3D Lower Limb Musculoskeletal Model for Simultaneous Estimation of Musculo-Tendon, Joint Contact, Ligament and Bone Forces During Gait,” J. Biomech., 47(1), pp. 50–58. [CrossRef] [PubMed]
Bendjaballah, M. Z. , Shirazi-Adl, A. , and Zukor, D. J. , 1998, “ Biomechanical Response of the Passive Human Knee Joint Under Anterior-Posterior Forces,” Clin. Biomech., 13(8), pp. 625–633. [CrossRef]
Donahue, T. L. H. , Hull, M. L. , Rashid, M. M. , and Jacobs, C. R. , 2002, “ A Finite Element Model of the Human Knee Joint for the Study of Tibio-Femoral Contact,” ASME J. Biomech. Eng., 124(3), pp. 273–280. [CrossRef]
Peña, E. , Calvo, B. , Martínez, M. A. , and Doblaré, M. , 2006, “ A Three-Dimensional Finite Element Analysis of the Combined Behavior of Ligaments and Menisci in the Healthy Human Knee Joint,” J. Biomech., 39(9), pp. 1686–1701. [CrossRef] [PubMed]
Li, G. , Gil, J. , Kanamori, A. , and Woo, S. L. , 1999, “ A Validated Three-Dimensional Computational Model of a Human Knee Joint,” ASME J. Biomech. Eng., 121(6), pp. 657–662. [CrossRef]
Guess, T. M. , Thiagarajan, G. , Kia, M. , and Mishra, M. , 2010, “ A Subject Specific Multibody Model of the Knee With Menisci,” Med. Eng. Phys., 32(5), pp. 505–515. [CrossRef] [PubMed]
Kazemi, M. , Dabiri, Y. , and Li, L. P. , 2013, “ Recent Advances in Computational Mechanics of the Human Knee Joint,” Comput. Math. Methods Med., 2013, p. 718423. [CrossRef] [PubMed]
Xu, H. , Bloswick, D. , and Merryweather, A. , 2014, “ An Improved OpenSim Gait Model With Multiple Degrees of Freedom Knee Joint and Knee Ligaments,” Comput. Methods Biomech. Biomed. Eng., 18(11), pp. 1217–1224. [CrossRef]
Al Nazer, R. , Rantalainen, T. , Heinonen, A. , Sievänen, H. , and Mikkola, A. , 2008, “ Flexible Multibody Simulation Approach in the Analysis of Tibial Strain During Walking,” J. Biomech., 41(5), pp. 1036–1043. [CrossRef] [PubMed]
Anderson, F. C. , and Pandy, M. G. , 2001, “ Dynamic Optimization of Human Walking,” ASME J. Biomech. Eng., 123(5), pp. 381–390. [CrossRef]
Marra, M. A. , Vanheule, V. , Fluit, R. , Koopman, B. H. F. J. M. , Rasmussen, J. , Verdonschot, N. , and Andersen, M. S. , 2015, “ A Subject-Specific Musculoskeletal Modeling Framework to Predict In Vivo Mechanics of Total Knee Arthroplasty,” ASME J. Biomech. Eng., 137(2), p. 020904. [CrossRef]
Christophy, M. , Faruk Senan, N. A. , Lotz, J. C. , and O'Reilly, O. M. , 2012, “ A Musculoskeletal Model for the Lumbar Spine,” Biomech. Model. Mechanobiol., 11(1), pp. 19–34. [CrossRef] [PubMed]
Koell, P. , Cheze, L. , and Dumas, R. , 2010, “ Prediction of Internal Spine Configuration From External Measurements Using a Multi-Body Model of the Spine,” Comput. Methods Biomech. Biomed. Eng., 13(Suppl. 1), pp. 79–80. [CrossRef]
Petit, Y. , Aubin, C. E. , and Labelle, H. , 2004, “ Patient-Specific Mechanical Properties of a Flexible Multi-Body Model of the Scoliotic Spine,” Med. Biol. Eng. Comput., 42(1), pp. 55–60. [CrossRef] [PubMed]
Marin, F. , Hoang, N. , Aufaure, P. , and Ho Ba Tho, M. C. , 2010, “ In Vivo Intersegmental Motion of the Cervical Spine Using an Inverse Kinematics Procedure,” Clin. Biomech., 25(5), pp. 389–396. [CrossRef]
Fujie, H. , Mabuchi, K. , and Woo, S. , 1993, “ The Use of Robotics Technology to Study Human Joint Kinematics: A New Methodology,” ASME J. Biomech. Eng., 115(3), pp. 211–217. [CrossRef]
Markolf, K. L. , Mensch, J. , and Amstutz, H. , 1976, “ Stiffness and Laxity of the Knee—The Contributions of the Supporting Structures. A Quantitative In Vitro Study,” J. Bone Jt. Surg. Am., 58(5), pp. 583–594.
Eagar, P. , Hull, M. L. , and Howell, S. M. , 2001, “ A Method for Quantifying the Anterior Load–Displacement Behavior of the Human Knee in Both the Low and High Stiffness Regions,” J. Biomech., 34(12), pp. 1655–1660. [CrossRef] [PubMed]
Fox, R. J. , Harner, C. D. , Sakane, M. , Carlin, G. J. , and Woo, S. L. , 1998, “ Determination of the In Situ Forces in the Human Posterior Cruciate Ligament Using Robotic Technology. A Cadaveric Study,” Am. J. Sports Med., 26(3), pp. 395–401. [PubMed]
Kanamori, A. , Woo, S. L. , Ma, C. B. , Zeminski, J. , Rudy, T. W. , Li, G. , and Livesay, G. A. , 2000, “ The Forces in the Anterior Cruciate Ligament and Knee Kinematics During a Simulated Pivot Shift Test: A Human Cadaveric Study Using Robotic Technology,” Arthroscopy, 16(6), pp. 633–639. [CrossRef] [PubMed]
Loch, D. A. , Luo, Z. P. , Lewis, J. L. , and Stewart, N. J. , 1992, “ A Theoretical Model of the Knee and ACL: Theory and Experimental Verification,” J. Biomech., 25(1), pp. 81–90. [CrossRef] [PubMed]
Hsieh, H.-J. , Hu, C.-C. , Lu, T.-W. , Lu, H.-L. , Kuo, M.-Y. , Kuo, C.-C. , and Hsu, H.-C. , “ Evaluation of Three Force-Position Hybrid Control Methods for a Robot-Based Biological Joint Testing System,” Biomed. Eng. Online (in press).
Most, E. , Axe, J. , Rubash, H. , and Li, G. , 2004, “ Sensitivity of the Knee Joint Kinematics Calculation to Selection of Flexion Axes,” J. Biomech., 37(11), pp. 1743–1748. [CrossRef] [PubMed]
Fujie, H. , Sekito, T. , and Orita, A. , 2004, “ A Novel Robotic System for Joint Biomechanical Tests: Application to the Human Knee Joint,” ASME J. Biomech. Eng., 126(1), pp. 54–61. [CrossRef]
Fujie, H. , Livesay, G. , Fujita, M. , and Woo, S. , 1996, “ Forces and Moments in Six-DOF at the Human Knee Joint: Mathematical Description for Control,” J. Biomech., 29(12), pp. 1577–1585. [CrossRef] [PubMed]
Grood, E. , 1988, “ Limits of Movement in the Human Knee. Effect of Sectioning the Posterior Cruciate Ligament and Posterolateral Structures,” J. Bone Jt. Surg. Am., 70(1), pp. 88–97.
Zantop, T. , Herbort, M. , Raschke, M. J. , Fu, F. H. , and Petersen, W. , 2007, “ The Role of the Anteromedial and Posterolateral Bundles of the Anterior Cruciate Ligament in Anterior Tibial Translation and Internal Rotation,” Am. J. Sports Med., 35(2), pp. 223–227. [CrossRef] [PubMed]
Stokes, I. A. , Gardner-Morse, M. , Churchill, D. , and Laible, J. P. , 2002, “ Measurement of a Spinal Motion Segment Stiffness Matrix,” J. Biomech., 35(4), pp. 517–521. [CrossRef] [PubMed]
Gardner-Morse, M. G. , and Stokes, I. A. F. , 2004, “ Structural Behavior of Human Lumbar Spinal Motion Segments,” J. Biomech., 37(2), pp. 205–212. [CrossRef] [PubMed]
Pennestrì, E. , and Cheli, F. , 2006, Cinematica e dinamica dei sistemi multibody, Vol. 1, Casa Editrice Ambrosiana, Milano, Italy (in Italian).
Guess, T. M. , Liu, H. , Bhashyam, S. , and Thiagarajan, G. , 2011, “ A Multibody Knee Model With Discrete Cartilage Prediction of Tibio-Femoral Contact Mechanics,” Comput. Methods Biomech. Biomed. Eng., 16(3), pp. 256–270. [CrossRef]
Mommersteeg, T. J. , Huiskes, R. , Blankevoort, L. , Kooloos, J. G. , and Kauer, J. M. , 1997, “ An Inverse Dynamics Modeling Approach to Determine the Restraining Function of Human Knee Ligament Bundles,” J. Biomech., 30(2), pp. 139–146. [CrossRef] [PubMed]
Christophy, M. , Curtin, M. , Faruk Senan, N. A. , Lotz, J. C. , and O'Reilly, O. M. , 2013, “ On the Modeling of the Intervertebral Joint in Multibody Models for the Spine,” Multibody Syst. Dyn., 30(4), pp. 413–432. [CrossRef]
Kim, K. , Kim, Y. H. , and Lee, S. , 2012, “ General Computational Model for Human Musculoskeletal System of Spine,” J. Appl. Math., 2012, p. 484759.
Lu, T.-W. , and O'Connor, J. J. , 1999, “ Bone Position Estimation From Skin Marker Co-ordinates Using Global Optimisation With Joint Constraints,” J. Biomech., 32(2), pp. 129–134. [CrossRef] [PubMed]
Mokhtarzadeh, H. , Perraton, L. , Fok, L. , Muñoz, M. A. , Clark, R. , Pivonka, P. , and Bryant, A. L. , 2014, “ A Comparison of Optimisation Methods and Knee Joint Degrees of Freedom on Muscle Force Predictions During Single-Leg Hop Landings,” J. Biomech., 47(12), pp. 2863–2868. [CrossRef] [PubMed]
Di Gregorio, R. , and Parenti-Castelli, V. , 2003, “ A Spatial Mechanism With Higher Pairs for Modelling the Human Knee Joint,” ASME J. Biomech. Eng., 125(2), pp. 232–237. [CrossRef]


Grahic Jump Location
Fig. 1

(a) A schematic representation of the RJTS and the reference systems used are provided: G is the global coordinate system, Cs is the coordinate system of the load cell, and Cf is the anatomical coordinate system of the femur. (b) Cf was defined as follows: the origin was the midpoint between the MCL and LCL insertions; the z-axis was made to pass through LCL and MCL (transepicondylar axis) and pointed toward the latter point. The y-axis was defined as lying on the plane defined by LCL, MCL, and the centroid of the bone section (frontal plane) and perpendicular to the z-axis pointing toward the proximal part of the bone. Finally, the x-axis was defined to be perpendicular to both the y- and the z-axes and oriented to generate a right-handed frame.

Grahic Jump Location
Fig. 3

Compliance matrix validation of the ACL-deficient knee. See Fig. 2 for the explanation.

Grahic Jump Location
Fig. 2

The absolute error for the intact knee between displacements (a) and rotations (b) measured and computed with the compliance matrix at 30 deg of F-E is displayed. The values of A-P, P-D, and M-L computed displacements (c) and measured forces (e) of A-A, I-E, and F-E rotations (d) and moments (f) are also illustrated.



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In