Research Papers

Experimental and Numerical Models of Complex Clinical Scenarios; Strategies to Improve Relevance and Reproducibility of Joint Replacement Research

[+] Author and Article Information
Joan E. Bechtold

Gustilo Professor of Orthopaedic Research
Department of Orthopaedic Surgery;
Departments of Mechanical
and Biomedical Engineering;
Minneapolis Medical Research Foundation,
University of Minnesota,
The Life Sciences Building (Suite 118),
700 South 10th Avenue,
Minneapolis, MN 55415
e-mail: bechtold@umn.edu

Pascal Swider

IMFT UMR 5502,
CNRS-INPT Toulouse 3, France,
2 allees C. Soula,
Toulouse 31400, France
e-mail: pascal.swider@univ-tlse3.fr

Curtis Goreham-Voss

Department of Orthopaedic Surgery,
University of Minnesota,
The Life Sciences Building (Suite 118),
700 South 10th Avenue,
Minneapolis, MN 55415
e-mail: curtisgv@gmail.com

Kjeld Soballe

Department of Orthopaedic Surgery and
Orthopaedic Research Laboratory,
Aarhus University,
THG, Tage-Hansens Gade 2,
Aarhus C 8000, Denmark;
Department of Clinical Medicine—
Ortopædkirurgisk afdeling E,
Aarhus University,
THG, Tage-Hansens Gade 2,
Aarhus C 8000, Denmark
e-mail: soballe@clin.au.dk

1Corresponding author.

Manuscript received September 1, 2015; final manuscript received December 18, 2015; published online January 27, 2016. Editor: Beth A. Winkelstein.

J Biomech Eng 138(2), 021008 (Jan 27, 2016) (9 pages) Paper No: BIO-15-1436; doi: 10.1115/1.4032368 History: Received September 01, 2015

This research review aims to focus attention on the effect of specific surgical and host factors on implant fixation, and the importance of accounting for them in experimental and numerical models. These factors affect (a) eventual clinical applicability and (b) reproducibility of findings across research groups. Proper function and longevity for orthopedic joint replacement implants relies on secure fixation to the surrounding bone. Technology and surgical technique has improved over the last 50 years, and robust ingrowth and decades of implant survival is now routinely achieved for healthy patients and first-time (primary) implantation. Second-time (revision) implantation presents with bone loss with interfacial bone gaps in areas vital for secure mechanical fixation. Patients with medical comorbidities such as infection, smoking, congestive heart failure, kidney disease, and diabetes have a diminished healing response, poorer implant fixation, and greater revision risk. It is these more difficult clinical scenarios that require research to evaluate more advanced treatment approaches. Such treatments can include osteogenic or antimicrobial implant coatings, allo- or autogenous cellular or tissue-based approaches, local and systemic drug delivery, surgical approaches. Regarding implant-related approaches, most experimental and numerical models do not generally impose conditions that represent mechanical instability at the implant interface, or recalcitrant healing. Many treatments will work well in forgiving settings, but fail in complex human settings with disease, bone loss, or previous surgery. Ethical considerations mandate that we justify and limit the number of animals tested, which restricts experimental permutations of treatments. Numerical models provide flexibility to evaluate multiple parameters and combinations, but generally need to employ simplifying assumptions. The objectives of this paper are to (a) to highlight the importance of mechanical, material, and surgical features to influence implant–bone healing, using a selection of results from two decades of coordinated experimental and numerical work and (b) discuss limitations of such models and the implications for research reproducibility. Focusing model conditions toward the clinical scenario to be studied, and limiting conclusions to the conditions of a particular model can increase clinical relevance and research reproducibility.

Copyright © 2016 by ASME
Your Session has timed out. Please sign back in to continue.


Griffith, M. J. , Seidenstein, M. K. , Williams, D. , and Charnley, J. , 1978, “ Socket Wear in Charnley Low Friction Arthroplasty of the Hip,” Clin. Orthop. Relat. Res., 137, pp. 37–47. [PubMed]
Charnley, J. , 1961, “ Arthroplasty of the Hip. A New Operation,” Lancet, 277(7187), pp. 1129–1132. [CrossRef]
Lovald, S. T. , Ong, K. L. , Lau, E. C. , Schmier, J. K. , Bozic, K. J. , and Kurtz, S. M. , 2014, “ Mortality, Cost, and Downstream Disease of Total Hip Arthroplasty Patients in the Medicare Population,” J. Arthroplasty, 29(1), pp. 242–246. [CrossRef] [PubMed]
Warth, L. C. , Callaghan, J. J. , Liu, S. S. , Klaassen, A. L. , Goetz, D. D. , and Johnston, R. C. , 2014, “ Thirty-Five-Year Results After Charnley Total Hip Arthroplasty in Patients Less Than Fifty Years Old. A Concise Follow-Up of Previous Reports,” J. Bone Joint Surg. Am., 96(21), pp. 1814–1819. [CrossRef] [PubMed]
Bozic, K. J. , Kamath, A. F. , Ong, K. , Lau, E. , Kurtz, S. , Chan, V. , Vail, T. P. , Rubash, H. , and Berry, D. J. , 2015, “ Comparative Epidemiology of Revision Arthroplasty: Failed THA Poses Greater Clinical and Economic Burdens Than Failed TKA,” Clin. Orthop. Relat. Res., 473(6), pp. 2131–2138. [CrossRef] [PubMed]
Bozic, K. J. , Kurtz, S. M. , Lau, E. , Ong, K. , Vail, T. P. , and Berry, D. J. , 2009, “ The Epidemiology of Revision Total Hip Arthroplasty in the United States,” J. Bone Joint Surg. Am., 91(1), pp. 128–133. [CrossRef] [PubMed]
Smith, M. A. , Deakin, A. H. , Allen, D. , and Baines, J. , “ Midterm Outcomes of Revision Total Hip Arthroplasty Using a Modular Revision Hip System,” J. Arthroplasty, epub.
Bozic, K. J. , Lau, E. , Ong, K. , Chan, V. , Kurtz, S. , Vail, T. P. , Rubash, H. E. , and Berry, D. J. , 2014, “ Risk Factors for Early Revision After Primary Total Hip Arthroplasty in Medicare Patients,” Clin. Orthop. Relat. Res., 472(2), pp. 449–454. [CrossRef] [PubMed]
Ong, K. L. , Lau, E. , Suggs, J. , Kurtz, S. M. , and Manley, M. T. , 2010, “ Risk of Subsequent Revision After Primary and Revision Total Joint Arthroplasty,” Clin. Orthop. Relat. Res., 468(11), pp. 3070–3076. [CrossRef] [PubMed]
Syed, M. A. , Hutt, N. J. , Shah, N. , and Edge, A. J. , 2015, “ Hydroxyapatite Ceramic-Coated Femoral Components in Young Patients Followed Up for 17 to 25 Years: An Update of a Previous Report,” Bone Joint J., 97-B(6), pp. 749–754. [CrossRef] [PubMed]
Sandiford, N. A. , Skinner, J. A. , East, D. J. , Butler-Manuel, A. , Hinves, B. L. , and Shepperd, J. A. , 2014, “ Primary Total Hip Arthroplasty With Hydroxyapatite Coated Titanium Femoral Stems. Does Design Philosophy Influence Long Term Outcome?: Results of a Prospective Randomised Controlled Trial With Follow-Up of 10–15 Years,” Acta Orthop. Belg., 80(3), pp. 372–379. [PubMed]
Parvizi, J. , Alijanipour, P. , Barberi, E. F. , Hickok, N. J. , Phillips, K. S. , Shapiro, I. M. , Schwarz, E. M. , Stevens, M. H. , Wang, Y. , and Shirtliff, M. E. , 2015, “ Novel Developments in the Prevention, Diagnosis, and Treatment of Periprosthetic Joint Infections,” J. Am. Acad. Orthop. Surg., 23(S), pp. S32–S43. [CrossRef] [PubMed]
Solomon, L. B. , Costi, K. , Kosuge, D. , Cordier, T. , McGee, M. A. , and Howie, D. W. , 2015, “ Revision Total Hip Arthroplasty Using Cemented Collarless Double-Taper Femoral Components at a Mean Follow-Up of 13 Years (8 to 20): An Update,” Bone Joint J., 97B(8), pp. 1038–1045. [CrossRef]
Pijls, B. G. , Nieuwenhuijse, M. J. , Fiocco, M. , Plevier, J. W. , Middeldorp, S. , Nelissen, R. G. , and Valstar, E. R. , 2012, “ Early Proximal Migration of Cups is Associated With Late Revision in THA: A Systematic Review and Meta-Analysis of 26 RSA Studies and 49 Survival Studies,” Acta Orthop., 83(6), pp. 583–591. [CrossRef] [PubMed]
Klerken, T. , Mohaddes, M. , Nemes, S. , and Kärrholm, J. , 2015, “ High Early Migration of the Revised Acetabular Component is a Predictor of Late Cup Loosening: 312 Cup Revisions Followed With Radiostereometric Analysis for 2–20 Years,” Hip Int., 25(5), pp. 471–476. [CrossRef] [PubMed]
Søballe, K. , 1993, “ Hydroxyapatite Ceramic Coating for Bone Implant Fixation,” Acta Orthop. Scand., 64(Suppl. 255), pp. 1–58. [CrossRef] [PubMed]
Daugaard, H. , Elmengaard, B. , Andreassen, T. , Bechtold, J. , Lamberg, A. , and Soballe, K. , 2011, “ Parathyroid Hormone Treatment Increases Fixation of Orthopedic Implants With Gap Healing: A Biomechanical and Histomorphometric Canine Study of Porous Coated Titanium Alloy Implants in Cancellous Bone,” Calcif. Tissue Int., 88(4), pp. 294–303. [CrossRef] [PubMed]
Daugaard, H. , Elmengaard, B. , Andreassen, T. T. , Lamberg, A. , Bechtold, J. E. , and Soballe, K. , 2012, “ Systemic Intermittent Parathyroid Hormone Treatment Improves Osseointegration of Press-Fit Inserted Implants in Cancellous Bone,” Acta Orthop., 83(4), pp. 411–419. [CrossRef] [PubMed]
Søballe, K. , Chen, X. , Jensen, T. B. , Kidder, L. , and Bechtold, J. E. , 2007, “ Alendronate Treatment in the Revision Setting, With and Without Controlled Implant Motion: An Experimental Study in Dogs,” Acta Orthop., 78(6), pp. 800–807. [CrossRef] [PubMed]
Jensen, T. B. , Bechtold, J. E. , Chen, X. , and Søballe, K. , 2007, “ Systemic Alendronate Treatment Improves Fixation of Press-Fit Implants: A Canine Study Using Nonloaded Implants,” J. Orthop. Res., 25(6), pp. 772–778. [CrossRef] [PubMed]
Collins, F. S. , and Tabak, L. A. , 2014, “ Policy: NIH Plans to Enhance Reproducibility,” Nature, 505(7485), pp. 612–613. [CrossRef] [PubMed]
Manolagas, S. C. , and Kronenberg, H. M. , 2014, “ Reproducibility of Results in Preclinical Studies: A Perspective From the Bone Field,” J. Bone Miner. Res., 29(10), pp. 2131–2140. [CrossRef] [PubMed]
Daugaard, H. , Elmengaard, B. , Bechtold, J. E. , Jensen, T. , and Soballe, K. , 2010, “ The Effect on Bone Growth Enhancement of Implant Coatings With Hydroxyapatite and Collagen Deposited Electrochemically and by Plasma Spray,” J. Biomed. Mater. Res. A., 92(3), pp. 913–921. [PubMed]
Søballe, K. , Jensen, T. B. , Mouzin, O. , Kidder, L. , and Bechtold, J. E. , 2004, “ Differential Effect of a Bone Morphogenetic Protein-7 (OP-1) on Primary and Revision Loaded, Stable Implants With Allograft,” J. Biomed. Mater. Res. A., 71(4), pp. 569–576. [CrossRef] [PubMed]
Bechtold, J. E. , Mouzin, O. , Kidder, L. , and Søballe, K. , 2001, “ A Controlled Experimental Model of Revision Implants: Part II. Implementation With Loaded Titanium Implants and Bone Graft,” Acta Orthop. Scand., 72(6), pp. 650–656. [CrossRef] [PubMed]
Daugaard, H. , 2011, “ The Influence of Parathyroid Hormone Treatment on Implant Fixation,” Dan. Med. Bull., 58(9), p. B4317. [PubMed]
Daugaard, H. , Elmengaard, B. , Andreassen, T. T. , Baas, J. , Bechtold, J. E. , and Soballe, K. , 2011, “ The Combined Effect of Parathyroid Hormone and Bone Graft on Implant Fixation,” J. Bone Joint Surg. Br., 93(1), pp. 131–139. [CrossRef] [PubMed]
Elmengaard, B. , Bechtold, J. E. , Baas, J. , Jakobsen, T. , and Søballe, K. , 2007, “ Fixation of Revision Implants is Improved by the Surgical Technique of Cracking the Sclerotic Bone Rim Compared to Reaming,” 53rd Annual Meeting of the Orthopaedic Research Society, San Diego, CA, Feb. 11–14, p. 1727.
Pearce, A. I. , Richards, R. G. , Milz, S. , Schneider, E. , and Pearce, S. G. , 2007, “ Animal Models for Implant Biomaterial Research in Bone: A Review,” Eur. Cell Mater., 13, pp. 1–10. [PubMed]
Virdi, A. S. , Irish, J. , Sena, K. , Liu, M. , Ke, H. Z. , McNulty, M. A. , and Sumner, D. R. , 2015, “ Sclerostin Antibody Treatment Improves Implant Fixation in a Model of Severe Osteoporosis,” J. Bone Joint Surg. Am., 97(2), pp. 133–140. [CrossRef] [PubMed]
Luangphakdy, V. , Walker, E. , Shinohara, K. , Pan, H. , Hefferan, T. , Bauer, T. W. , Stockdale, L. , Saini, S. , Dadsetan, M. , Runge, M. B. , Vasanji, A. , Griffith, L. , Yaszemski, M. , and Muschler, G. F. , 2013, “ Evaluation of Osteoconductive Scaffolds in the Canine Femoral Multi-Defect Model,” Tissue Eng., Part A., 19(5–6), pp. 634–648. [CrossRef]
Tsutsumi, R. , Hock, C. , Bechtold, C. D. , Proulx, S. T. , Bukata, S. V. , Ito, H. , Awad, H. A. , Nakamura, T. , O'Keefe, R. J. , and Schwarz, E. M. , 2008, “ Differential Effects of Biologic Versus Bisphosphonate Inhibition of Wear Debris-Induced Osteolysis Assessed by Longitudinal Micro-CT,” J. Orthop. Res., 26(10), pp. 1340–1346. [CrossRef] [PubMed]
Doube, M. , Kłosowski, M. M. , Arganda-Carreras, I. , Cordelières, F. P. , Dougherty, R. P. , Jackson, J. S. , Schmid, B. , Hutchinson, J. R. , and Shefelbine, S. J. , 2010, “ BoneJ: Free and Extensible Bone Image Analysis in ImageJ,” Bone, 47(6), pp. 1076–1079. [CrossRef] [PubMed]
Kabel, J. , Odgaard, A. , van Rietbergen, B. , and Huiskes, R. , 1999, “ Connectivity and the Elastic Properties of Cancellous Bone,” Bone, 24(2), pp. 115–120. [CrossRef] [PubMed]
Swider, P. , Pedrono, A. , Mouzin, O. , Søballe, K. , and Bechtold, J. E. , 2006, “ Biomechanical Analysis of the Shear Behaviour Adjacent to an Axially Loaded Implant,” J. Biomech., 39(10), pp. 1873–1882. [CrossRef] [PubMed]
Guérin, G. , Ambard, D. , and Swider, P. , 2009, “ Cells, Growth Factors and Bioactive Surface Properties in a Mechanobiological Model of Implant Healing,” J. Biomech., 42(15), pp. 2555–2561. [CrossRef] [PubMed]
Khalil, G. , Lorthois, S. , Marcoux, M. , Mansat, P. , and Swider, P. , 2011, “ Wave Front Migration of Endothelial Cells in a Bone–Implant Interface,” J. Biomech., 44(10), pp. 1980–1986. [CrossRef] [PubMed]
Khalil, G. , Mansat, P. , Søballe, K. , Bechtold, J. E. , and Swider, P. , 2012, “ A Reactive Model to Predict the Periprosthetic Healing,” Comput. Methods Biomech. Biomed. Eng., 15(Suppl. 1), pp. 21–22. [CrossRef]
Swider, P. , Ambard, D. , Guérin, G. , Søballe, K. , and Bechtold, J. E. , 2011, “ Sensitivity Analysis of Periprosthetic Healing to Cell Migration, Growth Factor and Post-Operative Gap Using a Mechanobiological Model,” Comput. Methods Biomech. Biomed. Eng., 14(9), pp. 763–771. [CrossRef]
Bailón-Plaza, A. , and van der Meulen, M. C. , 2001, “ A Mathematical Framework to Study the Effects of Growth Factor Influences on Fracture Healing,” J. Theor. Biol., 212(2), pp. 191–209. [CrossRef] [PubMed]
Anderson, A. R. , and Chaplain, M. A. , 1998, “ Continuous and Discrete Mathematical Models of Tumor-Induced Angiogenesis,” Bull. Math. Biol., 60(5), pp. 857–899. [CrossRef] [PubMed]
Yang, J. , Faverjon, B. , Dureisseix, D. , Swider, P. , and Kessissoglou, N. , 2014, “ Stochastic Porous Model of a Bone–Implant Healing Process Using Polynomial Chaos Expansion,” 43rd International Congress on Noise Control Engineering (inter.noise 2014), Melbourne, Australia, Nov. 16–19, p. 801.
Comadoll, J. L. , Bianco, P. T. , Bechtold, J. E. , and Gustilo, R. B. , 1991, “ Association Between Mechanical Stability, Cortical Strains and Histology of Femurs Retrieved With Uncemented Femoral Prostheses,” 15th Annual Meeting of the American Society of Biomechanics, Tempe, AZ, Oct. 16–18, p. 136.
Mouzin, O. , Søballe, K. , and Bechtold, J. E. , 2001, “ Loading Improves Anchorage of Hydroxyapatite Implants More Than Titanium Implants,” J. Biomed. Mater. Res., 58(1), pp. 61–68. [CrossRef] [PubMed]
Nieuwenhuijse, M. J. , Valstar, E. R. , Kaptein, B. L. , and Nelissen, R. G. , 2012, “ Good Diagnostic Performance of Early Migration as a Predictor of Late Aseptic Loosening of Acetabular Cups: Results From Ten Years of Follow-Up With Roentgen Stereophotogrammetric Analysis (RSA),” J. Bone Joint Surg. Am., 94(10), pp. 874–880. [CrossRef] [PubMed]


Grahic Jump Location
Fig. 1

Differential effect of implant motion with the same implant coating (titanium)

Grahic Jump Location
Fig. 2

Differential effect of implant coating (titanium and hydroxyapatite) when an implant undergoes relative motion (unstable implant)

Grahic Jump Location
Fig. 3

Differential effect of various compositions of the same osteopromotive coating (titanium control and three compositions of Hydroxyapatite), under unloaded gap conditions

Grahic Jump Location
Fig. 4

Differential effect of surgical technique of implant revision (second surgery) and of bone graft, with the same implant coating (titanium)

Grahic Jump Location
Fig. 5

Differential effect of a systemic treatment (PTH) for three implant settings (press-fit, empty surgical gap, grafted surgical gap) with the same implant coating (titanium)

Grahic Jump Location
Fig. 6

Selected bone–implant images of retrieved specimens from microCT slices [28], with reconstructed computer model (right)

Grahic Jump Location
Fig. 11

Relevance of experimental model to represent local features of revision implant fixation

Grahic Jump Location
Fig. 10

Effect of the strength of the bone material on implant pushout strength, with bone volume held constant

Grahic Jump Location
Fig. 9

Relationship of implant pushout strength with bone volume and geometric arrangement

Grahic Jump Location
Fig. 8

Implant pushout strength as a function of trabecular thickness, radial spacing, circumferential spacing and depth

Grahic Jump Location
Fig. 7

Comparison of experimental pushout results with subject-specific finite element output



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In