Research Papers

On Buckling Morphogenesis

[+] Author and Article Information
Celeste M. Nelson

Departments of Chemical and
Biological Engineering and Molecular Biology,
Princeton University,
303 Hoyt Laboratory, William Street,
Princeton, NJ 08544
e-mail: celesten@princeton.edu

1Corresponding author.

Manuscript received October 18, 2015; final manuscript received November 13, 2015; published online January 27, 2016. Editor: Victor H. Barocas.

J Biomech Eng 138(2), 021005 (Jan 27, 2016) (6 pages) Paper No: BIO-15-1525; doi: 10.1115/1.4032128 History: Received October 18, 2015; Revised November 13, 2015

Cell-generated mechanical forces drive many of the tissue movements and rearrangements that are required to transform simple populations of cells into the complex three-dimensional geometries of mature organs. However, mechanical forces do not need to arise from active cellular movements. Recent studies have illuminated the roles of passive forces that result from mechanical instabilities between epithelial tissues and their surroundings. These mechanical instabilities cause essentially one-dimensional epithelial tubes and two-dimensional epithelial sheets to buckle or wrinkle into complex topologies containing loops, folds, and undulations in organs as diverse as the brain, the intestine, and the lung. Here, I highlight examples of buckling and wrinkling morphogenesis, and suggest that this morphogenetic mechanism may be broadly responsible for sculpting organ form.

Copyright © 2016 by ASME
Your Session has timed out. Please sign back in to continue.


Levine, M. , and Davidson, E. H. , 2005, “ Gene Regulatory Networks for Development,” Proc. Natl. Acad. Sci. U. S. A., 102(14), pp. 4936–4942. [CrossRef] [PubMed]
Hironaka, K. , and Morishita, Y. , 2012, “ Encoding and Decoding of Positional Information in Morphogen-Dependent Patterning,” Curr. Opin. Genet. Dev., 22(6), pp. 553–561. [CrossRef] [PubMed]
Kicheva, A. , Cohen, M. , and Briscoe, J. , 2012, “ Developmental Pattern Formation: Insights From Physics and Biology,” Science, 338(6104), pp. 210–212. [CrossRef] [PubMed]
Thompson, D. W. , 1917, On Growth and Form, University Press, Cambridge, UK.
Mammoto, T. , Mammoto, A. , and Ingber, D. E. , 2013, “ Mechanobiology and Developmental Control,” Annu. Rev. Cell Dev. Biol., 29(1), pp. 27–61. [CrossRef] [PubMed]
Lecuit, T. , and Yap, A. S. , 2015, “ E-Cadherin Junctions as Active Mechanical Integrators in Tissue Dynamics,” Nat. Cell Biol., 17(5), pp. 533–539. [CrossRef] [PubMed]
Chanet, S. , and Martin, A. C. , 2014, “ Mechanical Force Sensing in Tissues,” Prog. Mol. Biol. Transl. Sci., 126, pp. 317–352. [PubMed]
Siedlik, M. J. , and Nelson, C. M. , 2015, “ Regulation of Tissue Morphodynamics: An Important Role for Actomyosin Contractility,” Curr. Opin. Genet. Dev., 32, pp. 80–85. [CrossRef] [PubMed]
Blanchard, G. B. , Kabla, A. J. , Schultz, N. L. , Butler, L. C. , Sanson, B. , Gorfinkiel, N. , Mahadevan, L. , and Adams, R. J. , 2009, “ Tissue Tectonics: Morphogenetic Strain Rates, Cell Shape Change and Intercalation,” Nat. Methods, 6(6), pp. 458–464. [CrossRef] [PubMed]
Taber, L. A. , 2014, “ Morphomechanics: Transforming Tubes Into Organs,” Curr. Opin. Genet. Dev., 27, pp. 7–13. [CrossRef] [PubMed]
Volokh, K. Y. , 2006, “ Tissue Morphogenesis: A Surface Buckling Mechanism,” Int. J. Dev. Biol., 50(2–3), pp. 359–365. [CrossRef] [PubMed]
Sharon, E. , Roman, B. , Marder, M. , Shin, G. S. , and Swinney, H. L. , 2002, “ Mechanics. Buckling Cascades in Free Sheets,” Nature, 419(6907), pp. 579. [CrossRef] [PubMed]
Sharon, E. , and Efrati, E. , 2010, “ The Mechanics of Non-Euclidian Plates,” Soft Matter, 6(22), pp. 5693–5704. [CrossRef]
Cerda, E. , and Mahadevan, L. , 2003, “ Geometry and Physics of Wrinkling,” Phys. Rev. Lett., 90(7), p. 074302. [CrossRef] [PubMed]
Landau, L. D. , and Lifshitz, E. M. , 1986, Theory of Elasticity, Pergamon Press, Oxford, UK.
Biot, M. A. , 1937, “ Bending of an Infinite Beam on an Elastic Foundation,” ASME J. Appl. Mech., 4, pp. A1–A7.
Pocivavsek, L. , Dellsy, R. , Kern, A. , Johnson, S. , Lin, B. , Lee, K. Y. , and Cerda, E. , 2008, “ Stress and Fold Localization in Thin Elastic Membranes,” Science, 320(5878), pp. 912–916. [CrossRef] [PubMed]
Demery, V. , Davidovitch, B. , and Santangelo, C. D. , 2014, “ Mechanics of Large Folds in Thin Interfacial Films,” Phys. Rev. E Stat. Nonlinear Soft Matter Phys., 90(4), p. 042401. [CrossRef]
Biot, M. A. , 1957, “ Folding Instability of a Layered Viscoelastic Medium Under Compression,” Proc. R. Soc. London Ser. A, 242(1231), pp. 444–454. [CrossRef]
Biot, M. A. , 1959, “ On the Instability and Folding Deformation of a Layered Viscoelastic Medium Under Compression,” ASME J. Appl. Mech., 26, pp. 393–400.
Richman, D. P. , Stewart, R. M. , Hutchinson, J. W. , and Caviness, V. S., Jr. , 1975, “ Mechanical Model of Brain Convolutional Development,” Science, 189(4196), pp. 18–21. [CrossRef] [PubMed]
Striedter, G. F. , Srinivasan, S. , and Monuki, E. S. , 2015, “ Cortical Folding: When, Where, How, and Why?,” Annu. Rev. Neurosci., 38(1), pp. 291–307. [CrossRef] [PubMed]
Savin, T. , Kurpios, N. A. , Shyer, A. E. , Florescu, P. , Liang, H. , Mahadevan, L. , and Tabin, C. J. , 2011, “ On the Growth and Form of the Gut,” Nature, 476(7358), pp. 57–62. [CrossRef] [PubMed]
Cervantes, S. , 2013, “ Cellular and Molecular Mechanisms of Intestinal Elongation in Mammals: The Long and Short of It,” Histol. Histopathol., 28(4), pp. 427–436. [PubMed]
Thomason, R. T. , Bader, D. M. , and Winters, N. I. , 2012, “ Comprehensive Timeline of Mesodermal Development in the Quail Small Intestine,” Dev. Dyn., 241(11), pp. 1678–1694. [CrossRef] [PubMed]
Kurpios, N. A. , Ibanes, M. , Davis, N. M. , Lui, W. , Katz, T. , Martin, J. F. , Izpisua Belmonte, J. C. , and Tabin, C. J. , 2008, “ The Direction of Gut Looping is Established by Changes in the Extracellular Matrix and in Cell:Cell Adhesion,” Proc. Natl. Acad. Sci. U.S.A., 105(25), pp. 8499–8506. [CrossRef] [PubMed]
Davis, N. M. , Kurpios, N. A. , Sun, X. , Gros, J. , Martin, J. F. , and Tabin, C. J. , 2008, “ The Chirality of Gut Rotation Derives From Left-Right Asymmetric Changes in the Architecture of the Dorsal Mesentery,” Dev. Cell, 15(1), pp. 134–145. [CrossRef] [PubMed]
Rubin, D. C. , 2007, “ Intestinal Morphogenesis,” Curr. Opin. Gastroenterol., 23(2), pp. 111–114. [CrossRef] [PubMed]
Coulombre, A. J. , and Coulombre, J. L. , 1958, “ Intestinal Development. I. Morphogenesis of the Villi and Musculature,” J. Embryol. Exp. Morphol., 6(3), pp. 403–411. [PubMed]
Shyer, A. E. , Tallinen, T. , Nerurkar, N. L. , Wei, Z. , Gil, E. S. , Kaplan, D. L. , Tabin, C. J. , and Mahadevan, L. , 2013, “ Villification: How the Gut Gets Its Villi,” Science, 342(6155), pp. 212–218. [CrossRef] [PubMed]
Nelson, C. M. , 2013, “ Forces in Epithelial Origami,” Dev. Cell, 26(6), pp. 554–556. [CrossRef] [PubMed]
Ben Amar, M. , and Jia, F. , 2013, “ Anisotropic Growth Shapes Intestinal Tissues During Embryogenesis,” Proc. Natl. Acad. Sci. U.S.A., 110(26), pp. 10525–10530. [CrossRef] [PubMed]
Shyer, A. E. , Huycke, T. R. , Lee, C. , Mahadevan, L. , and Tabin, C. J. , 2015, “ Bending Gradients: How the Intestinal Stem Cell Gets Its Home,” Cell, 161(3), pp. 569–580. [CrossRef] [PubMed]
Tucker, A. , and Sharpe, P. , 2004, “ The Cutting-Edge of Mammalian Development; How the Embryo Makes Teeth,” Nat. Rev. Genet., 5(7), pp. 499–508. [CrossRef] [PubMed]
Jernvall, J. , Kettunen, P. , Karavanova, I. , Martin, L. B. , and Thesleff, I. , 1994, “ Evidence for the Role of the Enamel Knot as a Control Center in Mammalian Tooth Cusp Formation: Non-Dividing Cells Express Growth Stimulating Fgf-4 Gene,” Int. J. Dev. Biol., 38(3), pp. 463–469. [PubMed]
Takigawa-Imamura, H. , Morita, R. , Iwaki, T. , Tsuji, T. , and Yoshikawa, K. , 2015, “ Tooth Germ Invagination From Cell–Cell Interaction: Working Hypothesis on Mechanical Instability,” J. Theor. Biol., 382, pp. 284–291. [CrossRef] [PubMed]
Osborn, J. W. , 2008, “ A Model of Growth Restraints to Explain the Development and Evolution of Tooth Shapes in Mammals,” J. Theor. Biol., 255(3), pp. 338–343. [CrossRef] [PubMed]
Metzger, R. J. , and Krasnow, M. A. , 1999, “ Genetic Control of Branching Morphogenesis,” Science, 284(5420), pp. 1635–1639. [CrossRef] [PubMed]
Morrisey, E. E. , and Hogan, B. L. , 2010, “ Preparing for the First Breath: Genetic and Cellular Mechanisms in Lung Development,” Dev. Cell, 18(1), pp. 8–23. [CrossRef] [PubMed]
Herriges, M. , and Morrisey, E. E. , 2014, “ Lung Development: Orchestrating the Generation and Regeneration of a Complex Organ,” Development, 141(3), pp. 502–513. [CrossRef] [PubMed]
Metzger, R. J. , Klein, O. D. , Martin, G. R. , and Krasnow, M. A. , 2008, “ The Branching Programme of Mouse Lung Development,” Nature, 453(7196), pp. 745–750. [CrossRef] [PubMed]
Alescio, T. , and Cassini, A. , 1962, “ Induction In Vitro of Tracheal Buds by Pulmonary Mesenchyme Grafted on Tracheal Epithelium,” J. Exp. Zool., 150(2), pp. 83–94. [CrossRef] [PubMed]
Grobstein, C. , 1953, “ Inductive Epitheliomesenchymal Interaction in Cultured Organ Rudiments of the Mouse,” Science, 118(3054), pp. 52–55. [CrossRef] [PubMed]
Nogawa, H. , and Ito, T. , 1995, “ Branching Morphogenesis of Embryonic Mouse Lung Epithelium in Mesenchyme-Free Culture,” Development, 121(4), pp. 1015–1022. [PubMed]
Cardoso, W. V. , Itoh, A. , Nogawa, H. , Mason, I. , and Brody, J. S. , 1997, “ FGF-1 and FGF-7 Induce Distinct Patterns of Growth and Differentiation in Embryonic Lung Epithelium,” Dev. Dyn., 208(3), pp. 398–405. [CrossRef] [PubMed]
Bellusci, S. , Grindley, J. , Emoto, H. , Itoh, N. , and Hogan, B. L. , 1997, “ Fibroblast Growth Factor 10 (FGF10) and Branching Morphogenesis in the Embryonic Mouse Lung,” Development, 124(23), pp. 4867–4878. [PubMed]
Park, W. Y. , Miranda, B. , Lebeche, D. , Hashimoto, G. , and Cardoso, W. V. , 1998, “ FGF-10 is a Chemotactic Factor for Distal Epithelial Buds During Lung Development,” Dev. Biol., 201(2), pp. 125–134. [CrossRef] [PubMed]
Min, H. , Danilenko, D. M. , Scully, S. A. , Bolon, B. , Ring, B. D. , Tarpley, J. E. , DeRose, M. , and Simonet, W. S. , 1998, “ Fgf-10 is Required for Both Limb and Lung Development and Exhibits Striking Functional Similarity to Drosophila Branchless,” Genes Dev., 12(20), pp. 3156–3161. [CrossRef] [PubMed]
Sekine, K. , Ohuchi, H. , Fujiwara, M. , Yamasaki, M. , Yoshizawa, T. , Sato, T. , Yagishita, N. , Matsui, D. , Koga, Y. , Itoh, N. , and Kato, S. , 1999, “ Fgf10 is Essential for Limb and Lung Formation,” Nat. Genet., 21(1), pp. 138–141. [CrossRef] [PubMed]
Tang, N. , Marshall, W. F. , McMahon, M. , Metzger, R. J. , and Martin, G. R. , 2011, “ Control of Mitotic Spindle Angle by the RAS-Regulated ERK1/2 Pathway Determines Lung Tube Shape,” Science, 333(6040), pp. 342–345. [CrossRef] [PubMed]
Levesque, B. M. , Vosatka, R. J. , and Nielsen, H. C. , 2000, “ Dihydrotestosterone Stimulates Branching Morphogenesis, Cell Proliferation, and Programmed Cell Death in Mouse Embryonic Lung Explants,” Pediatr. Res., 47(4 Pt 1), pp. 481–491. [CrossRef] [PubMed]
Volckaert, T. , Campbell, A. , Dill, E. , Li, C. , Minoo, P. , and De Langhe, S. , 2013, “ Localized Fgf10 Expression is Not Required for Lung Branching Morphogenesis But Prevents Differentiation of Epithelial Progenitors,” Development, 140(18), pp. 3731–3742. [CrossRef] [PubMed]
Varner, V. D. , Gleghorn, J. P. , Miller, E. , Radisky, D. C. , and Nelson, C. M. , 2015, “ Mechanically Patterning the Embryonic Airway Epithelium,” Proc. Natl. Acad. Sci. U.S.A., 112(30), pp. 9230–9235. [CrossRef] [PubMed]
Nogawa, H. , Morita, K. , and Cardoso, W. V. , 1998, “ Bud Formation Precedes the Appearance of Differential Cell Proliferation During Branching Morphogenesis of Mouse Lung Epithelium In Vitro,” Dev. Dyn., 213(2), pp. 228–235. [CrossRef] [PubMed]
McCulley, D. , Wienhold, M. , and Sun, X. , 2015, “ The Pulmonary Mesenchyme Directs Lung Development,” Curr. Opin. Genet. Dev., 32, pp. 98–105. [CrossRef] [PubMed]
Schachtner, S. K. , Wang, Y. , and Scott Baldwin, H. , 2000, “ Qualitative and Quantitative Analysis of Embryonic Pulmonary Vessel Formation,” Am. J. Respir. Cell Mol. Biol., 22(2), pp. 157–165. [CrossRef] [PubMed]
Sparrow, M. P. , and Lamb, J. P. , 2003, “ Ontogeny of Airway Smooth Muscle: Structure, Innervation, Myogenesis and Function in the Fetal Lung,” Respir. Physiol. Neurobiol., 137(2–3), pp. 361–372. [CrossRef] [PubMed]
Kumar, M. E. , Bogard, P. E. , Espinoza, F. H. , Menke, D. B. , Kingsley, D. M. , and Krasnow, M. A. , 2014, “ Mesenchymal Cells. Defining a Mesenchymal Progenitor Niche at Single-Cell Resolution,” Science, 346(6211), p. 1258810. [CrossRef] [PubMed]
Kim, H. Y. , Pang, M. F. , Varner, V . D. , Kojima, L. , Miller, E. , Radisky, D. C. , and Nelson, C. M. , 2015, “ Localized Smooth Muscle Differentiation is Essential for Epithelial Bifurcation During Branching Morphogenesis of the Mammalian Lung,” Dev. Cell, 34(6), pp. 719–726. [CrossRef] [PubMed]
Bayly, P. V. , Okamoto, R. J. , Xu, G. , Shi, Y. , and Taber, L. A. , 2013, “ A Cortical Folding Model Incorporating Stress-Dependent Growth Explains Gyral Wavelengths and Stress Patterns in the Developing Brain,” Phys. Biol., 10(1), p. 016005. [CrossRef] [PubMed]
His, W. , 1874, Unsere Korperform und das Physiologische Problem Ihrer Entstehung, F.C.W. Vogel, Leipzig, Germany.


Grahic Jump Location
Fig. 1

Schematics of cortical folding in the brain, villus morphogenesis in the small intestine, and branching morphogenesis in the airways of the lung

Grahic Jump Location
Fig. 2

Compressive forces induce buckling of linear rods. The curvature of the buckle, k, depends in part on the thickness of the rod, t.

Grahic Jump Location
Fig. 3

Epithelial tissues form sheets of packed cells, similar to layered films. (a) The basal surface of epithelial sheets adheres to a basement membrane, which itself is adjacent to a loosely packed mesenchyme. (b) Thin sheets supported by a (visco)elastic foundation will form wrinkles out of the plane of the membrane when placed under compression. The wavelength of the wrinkling, λ, depends of the thickness of the sheet, its mechanical properties, and those of the foundation.

Grahic Jump Location
Fig. 4

Buckling/wrinkling morphogenesis of developing epithelia. (a) Looping of the vertebrate small intestine depends on the mechanical properties of the intestinal tube and the mesentery, and their relative rates of growth. With permission from Ref. [23]. (b) The luminal surface of the small intestinal epithelium morphs from smooth, to longitudinal ridges, to zigzags, to villi at the same time as the smooth muscle differentiates around the basal surface of the tube. With permission from Ref. [30]. (c) Growth of the embryonic dental epithelium under confinement might cause it to buckle into the surrounding mesenchyme. With permission from Ref. [36]. (d) The terminal end of the embryonic airway epithelium bifurcates into two daughter branches as a result of spatially patterned differentiation of airway smooth muscle. When smooth muscle differentiation is inhibited, the growing airway epithelium forms buckles instead of a bifurcation, suggesting that the smooth muscle constrains the instability. Adapted from Ref. [59].



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In