Research Papers

Evaluation of Different Meshing Techniques for the Case of a Stented Artery

[+] Author and Article Information
Azadeh Lotfi

Department of Mechanical and
Manufacturing Engineering,
University of New South Wales,
Sydney, NSW 2052, Australia
e-mail: a.lotfi@unsw.edu.au

Anne Simmons

Department of Mechanical and
Manufacturing Engineering,
University of New South Wales,
Sydney, NSW 2052, Australia
e-mail: a.simmons@unsw.edu.au

Tracie Barber

Department of Mechanical and
Manufacturing Engineering,
University of New South Wales,
Sydney, NSW 2052, Australia
e-mail: t.barber@unsw.edu.au

Manuscript received September 18, 2015; final manuscript received December 17, 2015; published online January 29, 2016. Assoc. Editor: Ender A. Finol.

J Biomech Eng 138(3), 031005 (Jan 29, 2016) (8 pages) Paper No: BIO-15-1465; doi: 10.1115/1.4032502 History: Received September 18, 2015; Revised December 17, 2015

The formation and progression of in-stent restenosis (ISR) in bifurcated vessels may vary depending on the technique used for stenting. This study evaluates the effect of a variety of mesh styles on the accuracy and reliability of computational fluid dynamics (CFD) models in predicting these regions, using an idealized stented nonbifurcated model. The wall shear stress (WSS) and the near-stent recirculating vortices are used as determinants. The meshes comprise unstructured tetrahedral and polyhedral elements. The effects of local refinement, as well as higher-order elements such as prismatic inflation layers and internal hexahedral core, have also been examined. The uncertainty associated with individual mesh style was assessed through verification of calculations using the grid convergence index (GCI) method. The results obtained show that the only condition which allows the reliable comparison of uncertainty estimation between different meshing styles is that the monotonic convergence of grid solutions is in the asymptotic range. Comparisons show the superiority of a flow-adaptive polyhedral mesh over the commonly used adaptive and nonadaptive tetrahedral meshes in terms of resolving the near-stent flow features, GCI value, and prediction of WSS. More accurate estimation of hemodynamic factors was obtained using higher-order elements, such as hexahedral or prismatic grids. Incorporating these higher-order elements, however, was shown to introduce some degrees of numerical diffusion at the transitional area between the two meshes, not necessarily translating into high GCI value. Our data also confirmed the key role of local refinement in improving the performance and accuracy of nonadaptive mesh in predicting flow parameters in models of stented artery. The results of this study can provide a guideline for modeling biofluid domain in complex bifurcated arteries stented in regards to various stenting techniques.

Copyright © 2016 by ASME
Your Session has timed out. Please sign back in to continue.


Stone, P. H. , Coskun, A. U. , Kinlay, S. , Clark, M. E. , Sonka, M. , Wahle, A. , Ilegbusi, O. J. , Yeghiazarians, Y. , Popma, J. J. , Orav, J. , Kuntz, R. E. , and Feldman, C. L. , 2003, “ Effect of Endothelial Shear Stress on the Progression of Coronary Artery Disease, Vascular Remodeling, and In-Stent Restenosis in Humans: In Vivo 6-Month Follow-Up Study,” Circulation, 108(4), pp. 438–444. [CrossRef] [PubMed]
Elezi, S. , Kastrati, A. , Neumann, F. J. , Hadamitzky, M. , Dirschinger, J. , and Schömig, A. , 1998, “ Vessel Size and Long-Term Outcome After Coronary Stent Placement,” Circulation, 98(18), pp. 1875–1880. [CrossRef] [PubMed]
Yamashita, T. , Nishida, T. , Adamian, M. G. , Briguori, C. , Vaghetti, M. , Corvaja, N. , Albiero, R. , Finci, L. , Di Mario, C. , Tobis, J. M. , and Colombo, A. , 2000, “ Bifurcation Lesions: Two Stents Versus One Stent—Immediate and Follow-Up Results,” J. Am. Coll. Cardiol., 35(5), pp. 1145–1151. [CrossRef] [PubMed]
Al Suwaidi, J. , Berger, P. B. , Rihal, C. S. , Garratt, K. N. , Bell, M. R. , Ting, H. H. , Bresnahan, J. F. , Grill, D. E. , and Holmes, D. R. , 2000, “ Immediate and Long-Term Outcome of Intracoronary Stent Implantation for True Bifurcation Lesions,” J. Am. Coll. Cardiol., 35(4), pp. 929–936. [CrossRef] [PubMed]
Gastaldi, D. , Morlacchi, S. , Nichetti, R. , Capelli, C. , Dubini, G. , Petrini, L. , and Migliavacca, F. , 2010, “ Modelling of the Provisional Side-Branch Stenting Approach for the Treatment of Atherosclerotic Coronary Bifurcations: Effects of Stent Positioning,” Biomech. Model. Mechanobiol., 9(5), pp. 551–561. [CrossRef] [PubMed]
Baber, U. , Kini, A. S. , and Sharma, S. K. , 2010, “ Stenting of Complex Lesions: An Overview,” Nat. Rev. Cardiol., 7(9), pp. 485–496. [CrossRef] [PubMed]
Iakovou, I. , Foin, N. , Andreou, A. , Viceconte, N. , and Di Mario, C. , 2011, “ New Strategies in the Treatment of Coronary Bifurcations,” Herz, 36(3), pp. 198–212. [CrossRef] [PubMed]
Sharma, S. K. , 2005, “ Simultaneous Kissing Drug-Eluting Stent Technique for Percutaneous Treatment of Bifurcation Lesions in Large-Size Vessels,” Catheterization Cardiovasc. Intervention, 65(1), pp. 10–16. [CrossRef]
Latib, A. , Colombo, A. , and Sangiorgi, G. M. , 2009, “ Bifurcation Stenting: Current Strategies and New Devices,” Heart, 95(6), pp. 495–504. [CrossRef] [PubMed]
Samady, H. , Eshtehardi, P. , McDaniel, M. C. , Suo, J. , Dhawan, S. S. , Maynard, C. , Timmins, L. H. , Quyyumi, A. A. , and Giddens, D. P. , 2011, “ Coronary Artery Wall Shear Stress is Associated With Progression and Transformation of Atherosclerotic Plaque and Arterial Remodeling in Patients With Coronary Artery Disease,” Circulation, 124(7), pp. 779–788. [CrossRef] [PubMed]
Rajamohan, D. , Banerjee, R. K. , Back, L. H. , Ibrahim, A. A. , and Jog, M. A. , 2006, “ Developing Pulsatile Flow in a Deployed Coronary Stent,” ASME J. Biomech. Eng., 128(3), pp. 347–359. [CrossRef]
Bluestein, D. , Li, Y. M. , and Krukenkamp, I. B. , 2002, “ Free Emboli Formation in the Wake of Bi-Leaflet Mechanical Heart Valves and the Effects of Implantation Techniques,” J. Biomech., 35(12), pp. 1533–1540. [CrossRef] [PubMed]
Deplano, V. , Bertolotti, C. , and Barragan, P. , 2004, “ Three-Dimensional Numerical Simulations of Physiological Flows in a Stented Coronary Bifurcation,” Med. Biol. Eng. Comput., 42(5), pp. 650–659. [CrossRef] [PubMed]
Rikhtegar, F. , Pacheco, F. , Wyss, C. , Stok, K. S. , Ge, H. , Choo, R. J. , Ferrari, A. , Poulikakos, D. , Müller, R. , and Kurtcuoglu, V. , 2013, “ Compound Ex Vivo and In Silico Method for Hemodynamic Analysis of Stented Arteries,” PLoS One, 8(3), p. e58147. [CrossRef] [PubMed]
Hu, Z. , Chen, S. , Zhang, J. , Shan, S. , Liu, Z. , Ye, F. , Kan, J. , Xu, H. , Nguyen, K. , Kwan, T. , Nguyen, T. , and Hoang, T. , 2010, “ Distribution and Magnitude of Shear Stress after Coronary Bifurcation Lesions Stenting With the Classical Crush Technique: A New Predictor for In-Stent Restenosis,” J. Intervention Cardiol., 23(4), pp. 330–340. [CrossRef]
Morlacchi, S. , Chiastra, C. , Dubini, G. , and Migliavacca, F. , 2011, “ Numerical Analysis of the Culotte Stenting Technique: Comparison Between a Standard and a Dedicated Device,” 2011 SCATh Joint Workshop on New Technologies for Computer/Robot Assisted Surgery, pp. 1–4.
Moore, J. E. , Timmins, L. H. , and Ladisa, J. F. , 2010, “ Coronary Artery Bifurcation Biomechanics and Implications for Interventional Strategies,” Catheterization Cardiovasc. Intervention, 76(6), pp. 836–843. [CrossRef]
Rikhtegar, F. , Pacheco, F. , Wyss, C. , Stok, K. S. , Poulikakos, D. , Müller, R. , and Kurtcuoglu, V. , 2014, “ Hemodynamics in Coronary Arteries With Overlapping Stents,” J. Biomech., 47(2), pp. 505–511. [CrossRef] [PubMed]
Niu, J. , Qiao, A. , and Jiao, L. , 2013, “ Hemodynamic Analysis of Stent Expansion Ratio for Vertebral Artery Ostial Stenosis Intervention,” J. Mech. Med. Biol., 13(4), p. 1350058. [CrossRef]
Chen, H. Y. , Moussa, I. D. , Davidson, C. , and Kassab, G. H. , 2012, “ Impact of Main Branch Stenting on Endothelial Shear Stress: Role of Side Branch Diameter, Angle and Lesion,” J. R. Soc. Interface, 9(71), pp. 1187–1193. [CrossRef] [PubMed]
Katritsis, D. G. , Theodorakakos, A. , Pantos, I. , Gavaises, M. , Karcanias, N. , and Efstathopoulos, E. P. , 2012, “ Flow Patterns at Stented Coronary Bifurcations: Computational Fluid Dynamics Analysis,” Circ. Cardiovasc. Intervention, 5(4), pp. 530–539. [CrossRef]
Spiegel, M. , Redel, T. , Zhang, Y. J. , Struffert, T. , Hornegger, J. , Grossman, R. G. , Doerfler, A. , and Karmonik, C. , 2011, “ Tetrahedral vs. Polyhedral Mesh Size Evaluation on Flow Velocity and Wall Shear Stress for Cerebral Hemodynamic Simulation,” Comput. Methods Biomech. Biomed. Eng., 14(1), pp. 9–22. [CrossRef]
Tambasco, M. , and Steinman, D. A. , 2002, “ On Assessing the Quality of Particle Tracking Through Computational Fluid Dynamic Models,” ASME J. Biomech. Eng., 124(2), pp. 166–175. [CrossRef]
Prakash, S. , and Ethier, C. R. , 2001, “ Requirements for Mesh Resolution in 3D Computational Hemodynamics,” ASME J. Biomech. Eng., 123(2), pp. 134–144. [CrossRef]
Lotfi, A. , and Barber, T. J. , 2014, “ Optimization of CFD Meshing for Stented Vessel Geometries,” Appl. Mech. Mater., 553, pp. 373–378. [CrossRef]
Celik, I. , and Karatekin, O. , 1997, “ Numerical Experiments on Application of Richardson Extrapolation With Nonuniform Grids,” ASME J. Fluids Eng., 119(3), pp. 584–590. [CrossRef]
Roache, P. J. , 1972, Computational Fluid Dynamics, Hermosa, Albuquerque, NM.
Zubair, M. , Abdullah, M. Z. , and Ahmad, K. A. , 2013, “ Hybrid Mesh for Nasal Airflow Studies,” Comput. Math. Methods Med., 2013, p. 727362. [CrossRef] [PubMed]
Roache, P. J. , 1998, “ Verification of Codes and Calculations,” AIAA J., 36(5), pp. 696–702. [CrossRef]
Roache, P. J. , 1994, “ Perspective: A Method for Uniform Reporting of Grid Refinement Studies,” ASME J. Fluids Eng., 116(3), pp. 405–413. [CrossRef]
Longest, P. W. , and Vinchurkar, S. , 2007, “ Effects of Mesh Style and Grid Convergence on Particle Deposition in Bifurcating Airway Models With Comparisons to Experimental Data,” Med. Eng. Phys., 29(3), pp. 350–366. [CrossRef] [PubMed]
Vinchurkar, S. , and Longest, P. W. , 2008, “ Evaluation of Hexahedral, Prismatic and Hybrid Mesh Styles for Simulating Respiratory Aerosol Dynamics,” Comput. Fluids, 37(3), pp. 317–331. [CrossRef]
Ilayperuma, I. , Nanayakkara, B. G. , and Palahepitiya, K. N. , 2011, “ Sexual Differences in the Diameter of Coronary Arteries in an Adult Sri Lankan Population,” Int. J. Morphol., 29(4), pp. 1444–1448. [CrossRef]
Colombo, A. , Stankovic, G. , and Moses, G. W. , 2002, “ Selection of Coronary Stents,” J. Am. Coll. Cardiol., 40(6), pp. 1021–1033. [CrossRef] [PubMed]
Ku, D. N. , 1997, “ Blood Flow in Arteries,” Annu. Rev. Fluid Mech., 29(1), pp. 399–434. [CrossRef]
Back, M. , Kopchok, G. , Mueller, M. , Cavaye, D. , Donayre, C. , and White, R. A. , 1994, “ Changes in Arterial Wall Compliance After Endovascular Stenting,” J. Vasc. Surg., 19(5), pp. 905–911. [CrossRef] [PubMed]
Marossy, A. , Švorc, P. , Kron, I. , and Grešová, S. , 2009, “ Hemorheology and Circulation,” Clin. Hemorheol. Microcirc., 42(4), pp. 239–258. [PubMed]
Wilcox, D. C. , 1993, Turbulence Modelling for CFD, DCW Industries, La Canada, CA.
LaDisa, J. F. , Olson, L. E. , Guler, I. , Hettrick, D. A. , Audi, S. H. , Kersten, J. R. , Warltier, D. C. , and Pagel, P. S. , 2004, “ Stent Design Properties and Deployment Ratio Influence Indexes of Wall Shear Stress: A Three-Dimensional Computational Fluid Dynamics Investigation Within a Normal Artery,” J. Appl. Physiol., 97(1), pp. 424–430. [CrossRef] [PubMed]
Committee V 20, 2009, Standard for Verification and Validation in Computational Fluid Dynamics and Heat Transfer, American Society of Mechanical Engineers, New York.
Roache, P. J. , 2003, “ Error Bars for CFD,” AIAA Paper No. 2003-408.
Phillips, T. S. , and Roy, C. J. , 2011, “ Evaluation of Extrapolation-Based Discretization Error and Uncertainty Estimators,” AIAA Paper No. 2011-215.
Phillips, T. S. , and Roy, C. J. , 2013, “ A New Extrapolation-Based Uncertainty Estimator for Computational Fluid Dynamics,” AIAA Paper No. 2013-0260.
Oberkampf, W. L. , and Trucano, T. J. , 2002, “ Verification and Validation in Computational Fluid Dynamics,” Prog. Aerosp. Sci., 38(3), pp. 209–272. [CrossRef]
Eça, L. , and Hoekstra, M. , 2009, “ Evaluation of Numerical Error Estimation Based on Grid Refinement Studies With the Method of the Manufactured Solutions,” Comput. Fluids, 38(8), pp. 1580–1591. [CrossRef]
Cadafalch, J. , 2002, “ Verification of Finite Volume Computations on Steady State Fluid Flow and Heat Transfer,” ASME J. Fluids Eng., 124(1), pp. 11–21. [CrossRef]
Eça, L. , Vaz, G. B. , Falcao De Campos, J. A. C. , and Hoekstra, M. , 2004, “ Verification of Calculations of the Potential Flow Around Two-Dimensional Foils,” AIAA J., 42(12), pp. 2401–2407. [CrossRef]


Grahic Jump Location
Fig. 1

Stented artery with a single repeating unit of stent used for simulation

Grahic Jump Location
Fig. 2

Different mesh configurations used to discretize the geometry of stented vessel

Grahic Jump Location
Fig. 3

Comparison of grid solutions obtained based on awa_WSS values: (a) results are normalized by the extrapolated value for tetrahedral mesh styles with or without prism layer and (b) percentage of actual fractional error for all the mesh styles considered

Grahic Jump Location
Fig. 4

Variation of error with grid refinement factor obtained on the three finest grid solutions using Conv_Tet mesh

Grahic Jump Location
Fig. 5

(a) Schematic view of the stent strut exposed to elevated WSS (locations over the stent strut surface) and recirculating vortices (locations between and beyond the stent struts) and (b)–(d) WSS distribution on two lines (lines A and B, shown in the schematic view) in the axial direction of the flow using various mesh configurations

Grahic Jump Location
Fig. 6

Percentage of arterial surface exposed to near-stent recirculation using various mesh styles



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In