Technical Brief

Sagittal Fluoroscopy for the Assessment of Hindfoot Kinematics

[+] Author and Article Information
Benjamin D. McHenry

Department of Biomedical Engineering,
Marquette University,
1515 W. Wisconsin Avenue,
Milwaukee, WI 53233
e-mail: ben.mchenry@mu.edu

Emily Exten

Department of Orthopaedics,
Meriter-UnityPoint Health,
6408 Copps Avenue,
Monona, WI 53716
e-mail: elexten@aol.com

Jason T. Long

Department of OT/PT,
Cincinnati Children's Hospital Medical Center,
3430 Burnet Avenue,
Cincinnati, OH 45229;
Department of Orthopaedic Surgery,
Cincinnati Children's Hospital Medical Center,
3430 Burnet Avenue,
Cincinnati, OH 45229
e-mail: jason.long@cchmc.org

Gerald F. Harris

Department of Biomedical Engineering,
Marquette University,
1515 W. Wisconsin Avenue,
Milwaukee, WI 53233
e-mail: gerald.harris@marquette.edu

1Corresponding author.

Manuscript received March 25, 2015; final manuscript received December 29, 2015; published online January 29, 2016. Assoc. Editor: Paul Rullkoetter.

J Biomech Eng 138(3), 034502 (Jan 29, 2016) (6 pages) Paper No: BIO-15-1129; doi: 10.1115/1.4032445 History: Received March 25, 2015; Revised December 29, 2015

Current methods of quantifying foot kinematics during gait typically use markers placed externally on bony anatomic locations. These models are unable to analyze talocrural or subtalar motion because the talus lacks palpable landmarks to place external markers. Alternative methods of measuring these clinically relevant joint motions are invasive and have been limited to research purposes only. This study explores the use of fluoroscopy to noninvasively quantify talocrural and subtalar sagittal plane kinematics. A fluoroscopy system (FS) was designed and built to synchronize with an existing motion analysis system (MAS). Simultaneous fluoroscopic, marker motion, and ground reaction force (GRF) data were collected for five subjects to demonstrate system application. A hindfoot sagittal plane model was developed to evaluate talocrural and subtalar joint motion. Maximum talocrural plantar and dorsiflexion angles averaged among all the subjects occur at 12% and 83% of stance, respectively, with a range of motion of 20.1 deg. Maximum talocrural plantar and dorsiflexion angles averaged among all the subjects occur at toe-off and 67% of stance, respectively, with a range of motion of 8.7 deg. Based on the favorable comparison between the current fluoroscopically measured kinematics and previously reported results from alternative methods, it is concluded that fluoroscopic technology is well suited for measuring the sagittal plane hindfoot motion.

Copyright © 2016 by ASME
Topics: Kinematics
Your Session has timed out. Please sign back in to continue.


Brodsky, J. W. , Coleman, S. C. , Smith, S. , Polo, F. E. , and Tenenbaum, S. , 2013, “ Hindfoot Motion Following STAR Total Ankle Arthroplasty A Multisegment Foot Model Gait Study,” Foot Ankle Int., 34(11), pp. 1479–1485. [CrossRef] [PubMed]
Sealey, R. J. , Myerson, M. S. , Molloy, A. , Gamba, C. , Jeng, C. , and Kalesan, B. , 2009, “ Roger Mann Award 2008: Sagittal Plane Motion of the Hindfoot Following Ankle Arthrodesis: A Prospective Analysis,” Foot Ankle Int., 30(3), pp. 187–196. [CrossRef] [PubMed]
McHenry, B. D. , Exten, E. L. , Long, J. , Law, B. , Marks, R. M. , and Harris, G. , 2014, “ Sagittal Subtalar and Talocrural Joint Assessment With Weight-Bearing Fluoroscopy During Barefoot Ambulation,” Foot Ankle Int., pp. 430–435.
Carson, M. C. , Harrington, M. E. , Thompson, N. , O'Connor, J. J. , and Theologis, T. N. , 2001, “ Kinematic Analysis of a Multi-Segment Foot Model for Research and Clinical Applications: A Repeatability Analysis,” J. Biomech., 34(10), pp. 1299–1307. [CrossRef] [PubMed]
Hunt, A. E. , Smith, R. M. , Torode, M. , and Keenan, A. M. , 2001, “ Inter-Segment Foot Motion and Ground Reaction Forces Over the Stance Phase of Walking,” Clin. Biomech. (Bristol, Avon), 16(7), pp. 592–600. [CrossRef] [PubMed]
Kidder, S. M. , Abuzzahab, F. S., Jr. , Harris, G. F. , and Johnson, J. E. , 1996, “ A System for the Analysis of Foot and Ankle Kinematics During Gait,” IEEE Trans. Rehabil. Eng., 4(1), pp. 25–32. [CrossRef] [PubMed]
Leardini, A. , Benedetti, M. G. , Berti, L. , Bettinelli, D. , Nativo, R. , and Giannini, S. , 2007, “ Rear-Foot, Mid-Foot and Fore-Foot Motion During the Stance Phase of Gait,” Gait Posture, 25(3), pp. 453–462. [CrossRef] [PubMed]
Leardini, A. , Benedetti, M. G. , Catani, F. , Simoncini, L. , and Giannini, S. , 1999, “ An Anatomically Based Protocol for the Description of Foot Segment Kinematics During Gait,” Clin. Biomech. (Bristol, Avon), 14(8), pp. 528–536. [CrossRef] [PubMed]
MacWilliams, B. A. , Cowley, M. , and Nicholson, D. E. , 2003, “ Foot Kinematics and Kinetics During Adolescent Gait,” Gait Posture, 17(3), pp. 214–224. [CrossRef] [PubMed]
Lewis, G. S. , Sommer, H. , and Piazza, S. J. , 2006, “ In Vitro Assessment of a Motion-Based Optimization Method for Locating the Talocrural and Subtalar Joint Axes,” ASME J. Biomech. Eng., 128(4), pp. 596–603. [CrossRef]
van den Bogert, A. J. , Smith, G. D. , and Nigg, B. M. , 1994, “ In Vivo Determination of the Anatomical Axes of the Ankle Joint Complex: An Optimization Approach,” J. Biomech., 27(12), pp. 1477–1488. [CrossRef] [PubMed]
Pierrynowski, M. R. , Finstad, E. , Kemecsey, M. , and Simpson, J. , 2003, “ Relationship Between the Subtalar Joint Inclination Angle and the Location of Lower-Extremity Injuries,” J. Am. Podiatr. Med. Assoc., 93(6), pp. 481–484. [CrossRef] [PubMed]
Reinbolt, J. A. , Schutte, J. F. , Fregly, B. J. , Koh, B. I. , Haftka, R. T. , George, A. D. , and Mitchell, K. H. , 2005, “ Determination of Patient-Specific Multi-Joint Kinematic Models Through Two-Level Optimization,” J. Biomech., 38(3), pp. 621–626. [CrossRef] [PubMed]
Siston, R. A. , Daub, A. C. , Giori, N. J. , Goodman, S. B. , and Delp, S. L. , 2005, “ Evaluation of Methods That Locate the Center of the Ankle for Computer-Assisted Total Knee Arthroplasty,” Clin. Orthop. Relat. Res., 439, pp. 129–135. [CrossRef] [PubMed]
Arndt, A. , Westblad, P. , Winson, I. , Hashimoto, T. , and Lundberg, A. , 2004, “ Ankle and Subtalar Kinematics Measured With Intracortical Pins During the Stance Phase of Walking,” Foot Ankle Int., 25(5), pp. 357–364. [PubMed]
Lundgren, P. , Nester, C. , Liu, A. , Arndt, A. , Jones, R. , Stacoff, A. , Wolf, P. , and Lundberg, A. , 2008, “ Invasive In Vivo Measurement of Rear-, Mid- and Forefoot Motion During Walking,” Gait Posture, 28(1), pp. 93–100. [CrossRef] [PubMed]
Sheehan, F. T. , Seisler, A. R. , and Siegel, K. L. , 2007, “ In Vivo Talocrural and Subtalar Kinematics: A Non-Invasive 3D Dynamic MRI Study,” Foot Ankle Int., 28(3), pp. 323–335. [CrossRef] [PubMed]
Perlman, P. R. , Dubois, P. , and Siskind, V. , 1996, “ Validating the Process of Taking Lateral Foot X-Rays,” J. Am. Podiatr. Med. Assoc., 86(7), pp. 317–321. [CrossRef] [PubMed]
Wearing, S. C. , Smeathers, J. E. , Yates, B. , Sullivan, P. M. , Urry, S. R. , and Dubois, P. , 2005, “ Errors in Measuring Sagittal Arch Kinematics of the Human Foot With Digital Fluoroscopy,” Gait Posture, 21(3), pp. 326–332. [CrossRef] [PubMed]
Komistek, R. D. , Stiehl, J. B. , Buechel, F. F. , Northcut, E. J. , and Hajner, M. E. , 2000, “ A Determination of Ankle Kinematics Using Fluoroscopy,” Foot Ankle Int., 21(4), pp. 343–350. [PubMed]
de Asla, R. J. , Wanm, L. , Rubash, H. E. , and Li, G. , 2006, “ Six DOF In Vivo Kinematics of the Ankle Joint Complex: Application of a Combined Dual-Orthogonal Fluoroscopic and Magnetic Resonance Imaging Technique,” J. Orthop. Res., 24(5), pp. 1019–1027. [CrossRef] [PubMed]
Fukano, M. , and Fukubayashi, T. , 2014, “ Changes in Talocrural and Subtalar Joint Kinematics of Barefoot Versus Shod Forefoot Landing,” J. Foot Ankle Res., 7(1), p. 42. [CrossRef] [PubMed]
Kobayashi, T. , No, Y. , Yoneta, K. , Sadakiyo, M. , and Gamada, K. , 2013, “ In Vivo Kinematics of the Talocrural and Subtalar Joints With Functional Ankle Instability During Weight-Bearing Ankle Internal Rotation: A Pilot Study,” Foot Ankle Spec., 6(3), pp. 178–184. [CrossRef] [PubMed]
Kobayashi, T. , Saka, M. , Suzuki, E. , Yamazaki, N. , Suzukawa, M. , Akaike, A. , Shimizu, K. , and Gamada, K. , 2014, “ In Vivo Kinematics of the Talocrural and Subtalar Joints During Weightbearing Ankle Rotation in Chronic Ankle Instability,” Foot Ankle Spec., 7(1), pp. 13–19. [CrossRef] [PubMed]
Yamaguchi, S. , Sasho, T. , Kato, H. , Kuroyanagi, Y. , and Banks, S. A. , 2009, “ Ankle and Subtalar Kinematics During Dorsiflexion-Plantarflexion Activities,” Foot Ankle Int., 30(4), pp. 361–366. [CrossRef] [PubMed]
Kozanek, M. , Rubash, H. E. , Li, G. , and Richard, J. , 2009, “ Effect of Post-Traumatic Tibiotalar Osteoarthritis on Kinematics of the Ankle Joint Complex,” Foot Ankle Int., 30(8), pp. 734–740. [CrossRef] [PubMed]
Campbell, K. J. , Wilson, K. J. , LaPrade, R. F. , and Clanton, T. O. , 2014, “ Normative Rearfoot Motion During Barefoot and Shod Walking Using Biplane Fluoroscopy,” Knee Surg., Sports Traumatol., Arthrosc., epub.
Wang, B. , Roach, K. E. , Kapron, A. L. , Fiorentino, N. M. , Saltzman, C. L. , Singer, M. , and Anderson, A. E. , 2015, “ Accuracy and Feasibility of High-Speed Dual Fluoroscopy and Model-Based Tracking to Measure In Vivo Ankle Arthrokinematics,” Gait Posture, 41(4), pp. 888–893. [CrossRef] [PubMed]
Brown, D. C. , 1966, “ Decentering Distortion of Lenses,” Photometr. Eng., 32(3), pp. 444–462.
Conrady, A. E. , 1919, “ Decentred Lens-Systems,” Mon. Not. R. Astron. Soc., 79(5), pp. 384–390. [CrossRef]
Karau, K. L. , Johnson, R. H. , Molthen, R. C. , Dhyani, A. H. , Haworth, S. T. , Hanger, C. C. , Roerig, D. L. , and Dawson, C. A. , 2001, “ Microfocal X-Ray CT Imaging and Pulmonary Arterial Distensibility in Excised Rat Lungs,” Am. J. Physiol. Heart Circ. Physiol., 281(3), pp. H1447–H1457. [PubMed]
Myers, K. A. , Wang, M. , Marks, R. M. , and Harris, G. F. , 2004, “ Validation of a Multisegment Foot and Ankle Kinematic Model for Pediatric Gait,” IEEE Trans. Neural Syst. Rehabil. Eng., 12(1), pp. 122–130. [CrossRef] [PubMed]
Grood, E. S. , and Suntay, W. J. , 1983, “ A Joint Coordinate System for the Clinical Description of Three-Dimensional Motions: Application to the Knee,” ASME J. Biomech. Eng., 105(2), pp. 136–144. [CrossRef]
Wu, G. , Siegler, S. , Allard, P. , Kirtley, C. , Leardini, A. , Rosenbaum, D. , Whittle, M. , D′Lima, D. D. , Cristofolini, L. , and Witte, H. , 2002, “ ISB Recommendation on Definitions of Joint Coordinate System of Various Joints for the Reporting of Human Joint Motion-Part I: Ankle, Hip, and Spine,” J. Biomech., 35(4), pp. 543–548. [CrossRef] [PubMed]
Perry, J. , 1992, Gait Analysis: Normal and Pathological Function, Slack, Thorofare, NJ.
USNRC Technical Training Center, 2003, “ Dose Standards and Methods for Protection Against Radiation and Contamination,” Rev. 0603, U.S. Nuclear Regulatory Commission, Washinigton, DC, p. 8-3.


Grahic Jump Location
Fig. 3

Fluoroscopic markers and local coordinate axes. F1 and F2 represent the fluoroscopic marker locations for the talus, while F3 and F4 represent the fluoroscopic marker locations for the calcaneus. Local coordinate axes for the tibia, talus, and calcaneus are also shown. Local k-axes (not shown) are the cross of local i-axes with local j-axes.

Grahic Jump Location
Fig. 2

Typical fluoroscopic image. POI locations are translated from image coordinates (F1x′, F1z′) to global coordinates (F1X, F1Y, F1Z) using an external marker image (M1x′, M1z′) and global (M1X, M1Y, M1Z) coordinate locations, as well as the IM, subject foot progression angle (β, calculated from external markers), and camera static angular rotation from global (θ).

Grahic Jump Location
Fig. 1

System configuration (left) showing the embedded force plate with global X and Y coordinates (Z is the cross product of X and Y), emitter, image intensifier, and the digital camera. Foot position (right) showing the fluoroscopic image plane and sagittal motion plane of the foot which is rotated by foot progression angle (β).

Grahic Jump Location
Fig. 4

Talocrural (left) and subtalar (right) plantar/dorsiflexion angles (single subject, four trials)

Grahic Jump Location
Fig. 5

Talocrural (left) and subtalar (right) plantar/dorsiflexion angles (five subjects, four trials per subject)



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In